STATEMENT OF INTENT

These clinical practice guidelines (CPG) are meant to be guides for clinical practice, based on the best available evidence at the time of development. Adherence to these guidelines may not necessarily guarantee the best outcome in every case. Every healthcare provider is responsible for the management of his/her unique patient based on the clinical picture presented by the patient and the management options available locally.
UPDATING THE CPG

These guidelines were issued in 2017 and will be reviewed in a minimum period of four years (2021) or sooner if new evidence becomes available. When it is due for updating, the Chairman of the CPG or National Advisor of the related specialty will be informed about it. A discussion will be done on the need for a revision including the scope of the revised CPG. A multidisciplinary team will be formed and the latest systematic review methodology used by MaHTAS will be employed.

Every care is taken to ensure that this publication is correct in every detail at the time of publication. However, in the event of errors or omissions, corrections will be published in the web version of this document, which is the definitive version at all times. This version can be found on the websites mentioned above.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Levels of Evidence and Grading Recommendations, Assessment, Development and Evaluation</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>Key Recommendations</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>Guidelines Development and Objectives</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>Development Group</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>Review Committee</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>External Reviewers</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>Algorithm 1 Classification of Glaucoma based on Angle Configuration</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Algorithm 2 Classification of Primary Open Angle Glaucoma/ Ocular Hypertension/Primary Open Angle Glaucoma Suspect</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>Algorithm 3 Classification of Primary Angle Closure Suspect/ Primary Angle Closure/Primary Angle Closure Glaucoma</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>Algorithm 4 Setting the Target IOP</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>Algorithm 5 Adjustment of Target IOP</td>
<td>xiv</td>
</tr>
</tbody>
</table>

1. **INTRODUCTION**
 1.1 Epidemiology
 1.2 Definition and Classification

2. **RISK FACTORS**
 2.1 Risk Factors for Primary Open Angle Glaucoma
 2.2 Risk Factors for Primary Angle Closure Suspect/Primary Angle Closure/Primary Angle Closure Glaucoma

3. **SCREENING**

4. **DIAGNOSIS**
 4.1 History
 4.2 Examination
 4.3 Investigation
 4.4 Staging of Glaucoma

5. **TREATMENT**
 5.1 Principles of Treatment
 5.2 Medical Treatment
 5.3 Laser Treatment
 5.4 Surgical Treatment

6. **FOLLOW-UP**

TABLE OF CONTENTS
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>MONITORING OF PROGRESSION</td>
<td>27</td>
</tr>
<tr>
<td>7.1</td>
<td>Visual Field Assessment (Functional Test)</td>
<td>27</td>
</tr>
<tr>
<td>7.2</td>
<td>Optic Nerve and Retinal Nerve Fibre Layer Evaluation (Structural Test)</td>
<td>28</td>
</tr>
<tr>
<td>8.</td>
<td>REHABILITATION</td>
<td>29</td>
</tr>
<tr>
<td>9.</td>
<td>REFERRAL</td>
<td>30</td>
</tr>
<tr>
<td>10.</td>
<td>SPECIAL CONDITIONS</td>
<td>31</td>
</tr>
<tr>
<td>10.1</td>
<td>Ocular Hypertension</td>
<td>31</td>
</tr>
<tr>
<td>10.2</td>
<td>Primary Open Angle Glaucoma Suspect</td>
<td>33</td>
</tr>
<tr>
<td>10.3</td>
<td>Steroid-Induced Glaucoma</td>
<td>34</td>
</tr>
<tr>
<td>10.4</td>
<td>Neovascular Glaucoma</td>
<td>34</td>
</tr>
<tr>
<td>10.5</td>
<td>Intraocular Pressure Monitoring in Post-Refractive Surgery Cases</td>
<td>35</td>
</tr>
<tr>
<td>11.</td>
<td>IMPLEMENTING THE GUIDELINES</td>
<td>37</td>
</tr>
<tr>
<td>11.1</td>
<td>Facilitating and Limiting Factors</td>
<td>37</td>
</tr>
<tr>
<td>11.2</td>
<td>Potential Resource Implications</td>
<td>37</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>Example of Search Strategy</td>
<td>45</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>Clinical Questions</td>
<td>46</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>Van Herick Test</td>
<td>47</td>
</tr>
<tr>
<td>Appendix 4</td>
<td>Indentation/Dynamic Gonioscopy</td>
<td>48</td>
</tr>
<tr>
<td>Appendix 5</td>
<td>Estimation of Optic Disc Size</td>
<td>49</td>
</tr>
<tr>
<td>Appendix 6</td>
<td>Management Acute Angle Closure</td>
<td>51</td>
</tr>
<tr>
<td>Appendix 7</td>
<td>Proper Instillation Technique of Eye Drop</td>
<td>52</td>
</tr>
<tr>
<td>Appendix 8</td>
<td>Main Features of Topical Anti-Glaucoma Medications</td>
<td>53</td>
</tr>
<tr>
<td>Appendix 9</td>
<td>Laser Iridotomy</td>
<td>61</td>
</tr>
<tr>
<td>Appendix 10</td>
<td>Categories of Severity of Visual Impairment</td>
<td>62</td>
</tr>
<tr>
<td>Appendix 11</td>
<td>Ocular Hypertension Pathway (OHT and POAG Suspects with High IOP)</td>
<td>63</td>
</tr>
<tr>
<td>Appendix 12</td>
<td>POAG Suspects with Normal IOP Pathway</td>
<td>64</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>Disclosure Statement</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>Source of Funding</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>Level</td>
<td>Study design</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Evidence from at least one properly randomised controlled trial</td>
<td></td>
</tr>
<tr>
<td>II-1</td>
<td>Evidence obtained from well-designed controlled trials without randomisation</td>
<td></td>
</tr>
<tr>
<td>II-2</td>
<td>Evidence obtained from well-designed cohort or case-control analytic studies, preferably from more than one centre or group</td>
<td></td>
</tr>
<tr>
<td>II-3</td>
<td>Evidence from multiple time series with or without intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Opinions of respected authorities based on clinical experience; descriptive studies and case reports; or reports of expert committees</td>
<td></td>
</tr>
</tbody>
</table>

SOURCE: US / CANADIAN PREVENTIVE SERVICES TASK FORCE 2001

In line with the current development in CPG methodology, the CPG Unit of MaHTAS is in the process of incorporating [Grading Recommendations, Assessment, Development and Evaluation (GRADE)](#) into its work process. The quality of each retrieved evidence and its effect size are carefully assessed/reviewed by the CPG Development Group. In formulating the recommendations, overall balances of the following aspects are considered in determining the strength of the recommendations:-

- Overall quality of evidence
- Balance of benefits versus harms
- Values and preferences
- Resource implications
- Equity, feasibility and acceptability
KEY RECOMMENDATIONS

The following recommendations are highlighted by the CPG Development Group as the key recommendations that answer the main questions addressed in the CPG and should be prioritised for implementation.

Recommendation 1
- Risk factors* should be identified in the management of glaucoma.

Recommendation 2
- Population-based screening for glaucoma is not advocated.
- Screening of glaucoma should be considered for patients with risk factors.

Recommendation 3
- Glaucoma diagnosis should be made based on combination of history (with presence of risk factors), ocular examination and investigation.

Recommendation 4
- Medical treatment in glaucoma should be individualised based on patient's characteristics and drug factors, and adjusted according to target intraocular pressure (IOP).
- Prostaglandin analogues should be used as first-line treatment in glaucoma.
- Patient education should be given to patients with glaucoma. This includes benefits and side effects of treatment, proper instillation technique of eye drop and compliance to treatment.

Recommendation 5
- Laser iridotomy should be performed in primary angle closure disease when indicated.
- Peripheral iridoplasty may be considered for initial treatment in acute angle closure.

Recommendation 6
- Intraoperative Mitomycin C during trabeculectomy should be used in glaucoma patients at risk of surgical failure.

Recommendation 7
- Glaucoma patients with blindness or low vision should be referred for vision rehabilitation which includes vocational, occupational and independent living.
Recommendation 8
- Ocular hypertension (OHT) patients should have comprehensive initial eye examination and assessment of risk factors for conversion to primary open angle glaucoma (POAG).
 - Central corneal thickness measurement should be performed.
- Treatment of OHT should be based on the risk of conversion to POAG.

Recommendation 9
- Comprehensive eye examination and risk assessment should be performed in primary open angle glaucoma suspect.
 - Diurnal intraocular pressure fluctuation should be considered in the assessment.
GUIDELINES DEVELOPMENT AND OBJECTIVES

GUIDELINES DEVELOPMENT

The members of the Development Group (DG) for these Clinical Practice Guidelines (CPG) were from the Ministry of Health (MoH) and Ministry of Higher Education. There was active involvement of a multidisciplinary Review Committee (RC) during the process of the CPG development.

The CPG update was done based on the CPG Management of Primary Open Angle Glaucoma, issued in 2008. In the update, the scope had been widened to include both primary open angle and angle closure glaucoma, and also selected conditions. A literature search was carried out using the following electronic databases: mainly Medline via Ovid and Cochrane Database of Systemic Reviews and others e.g. Embase, Pubmed and Guidelines International Network (refer to Appendix 1 for Example of Search Strategy). The search was limited to literature published in the last ten years, on humans and in English. In addition, the reference lists of all retrieved literature and guidelines were searched to further identify relevant studies. Experts in the field were also contacted to identify further studies. All searches were conducted from 23 March 2015 to 29 July 2015. Literature searches were repeated for all clinical questions at the end of the CPG development process allowing any relevant papers published before 31 January 2017 to be included. Future CPG updates will consider evidence published after this cut-off date. The details of the search strategy can be obtained upon request from the CPG Secretariat.

References were also made to other CPGs on glaucoma such as Glaucoma: Diagnosis and Management of Chronic Open Angle Glaucoma and Ocular Hypertension (National Collaborating Centre for Acute Care, 2009), Primary Open-Angle Glaucoma PPP (American Academy of Ophthalmology, 2015), Terminology and Guidelines for Glaucoma 4th Edition (European Glaucoma Society, 2014) and Asia Pacific Glaucoma Guidelines Third Edition (Asian Pacific Glaucoma Society, 2016). The CPGs were evaluated using the Appraisal of Guidelines for Research and Evaluation (AGREE) II prior to them being used as references.

A total of 16 clinical questions were developed under different sections. Members of the DG were assigned individual questions within these sections (refer to Appendix 2 for Clinical Questions). The DG members met 25 times throughout the development of these guidelines. All literature retrieved were appraised by at least two DG members using Critical Appraisal Skill Programme checklist, presented in evidence tables and further discussed in each DG meetings. All statements and
recommendations formulated after that were agreed upon by both the DG and RC. Where evidence was insufficient, the recommendations were made by consensus of the DG and RC. This CPG is based largely on the findings of systematic reviews, meta-analyses and clinical trials, with local practices taken into consideration.

The literature used in these guidelines were graded using the US/Canadian Preventive Services Task Force Level of Evidence (2001), while the grading of recommendation was done using the principles of GRADE (refer to the preceding page). The writing of the CPG follows strictly the requirement of AGREE II.

On completion, the draft of the CPG was reviewed by external reviewers. It was also posted on the MoH Malaysia official website for feedback from any interested parties. The draft was finally presented to the Technical Advisory Committee for CPG, and the HTA and CPG Council MoH Malaysia for review and approval. Details on the CPG development by MaHTAS can be obtained from Manual on Development and Implementation of Evidence-based Clinical Practice Guidelines published in 2015 (available at http://www.moh.gov.my/index.php/pages/view/117).
OBJECTIVES

To provide evidence-based recommendations in the management of glaucoma on the following aspects:

- screening
- diagnosis
- treatment

CLINICAL QUESTIONS

Refer to Appendix 2

TARGET POPULATION

i. Inclusion Criteria
 - Adult patients (>18 years old) with:
 - primary open angle glaucoma
 - primary angle closure glaucoma
 - selected conditions such as ocular hypertension, glaucoma suspect, steroid-induced glaucoma, neovascular glaucoma and post-refractive surgery glaucoma

ii. Exclusion Criteria
 - Secondary open angle glaucoma including pseudo exfoliation or pigment dispersion, primary congenital, infantile or childhood glaucoma

TARGET GROUP/USERS

This document is intended to guide those involved in the management of glaucoma in primary and secondary/tertiary care including:

i. Doctors
ii. Optometrists
iii. Allied health professionals
iv. Trainees and medical students
v. Patients and their advocates
vi. Professional societies

HEALTHCARE SETTINGS

Primary and secondary/tertiary care settings
GUIDELINES DEVELOPMENT GROUP

Chairperson
Dr. Jelinar Dato’ Mohamed Noor JMW
Consultant Ophthalmologist
Hospital Kuala Lumpur, Kuala Lumpur

Members (alphabetical order)

Associate Professor Dr. Azhany Yaakub
Senior Lecturer & Ophthalmologist
Universiti Sains Malaysia, Kelantan

Dr. Farrah Jaafar
Ophthalmologist
Hospital Sultanah Bahiyah, Kedah

Associate Professor Dr. Jemaima Che Hamzah
Head of Department & Consultant Ophthalmologist
Universiti Kebangsaan Malaysia, Kuala Lumpur

Professor Dr. Liza Sharmini Ahmad Tajudin
Head of Department & Consultant Ophthalmologist,
Universiti Sains Malaysia, Kelantan

Ms. Loh Lai Yee
Pharmacist
Hospital Melaka

Dr. Moh. Aminuddin Mohd. Yusof
Head, Clinical Practices Guidelines Unit Health Technology Assessment Section,
Ministry of Health, Putrajaya

Dr. Mohd Aziz Husni
Consultant Ophthalmologist
Hospital Selayang, Selangor

Dr. Mohamad Aziz Salowi
Ophthalmologist
Hospital Selayang, Selangor

Ms. Loh Lai Yee
Pharmacist
Hospital Melaka

Dr. Norhalwani Husain
Ophthalmologist
Hospital Raja Perempuan Zainab II, Kelantan

Dr. Norlina Mohd Ramli
Senior Lecturer & Consultant Ophthalmologist
Universiti Malaya, Kuala Lumpur

Dr. Ong Poh Yan
Consultant Ophthalmologist
Hospital Selayang, Selangor

Dr. Rosdina Abd Kahar
Family Medicine Specialist
Klinik Kesihatan Sungai Mati, Tangkak, Johor

Ms. Siti Khadijah Osman
Optometrist
Hospital Kuala Lumpur, Kuala Lumpur

Associate Professor Dr. Sushil Kumar Vasudevan
Senior Lecturer & Consultant Ophthalmologist
Universiti Teknologi MARA, Selangor

Dr. Zainora Mohammed
Senior Lecturer & Optometrist
Universiti Kebangsaan Malaysia, Kuala Lumpur
REVIEW COMMITTEE

The draft guidelines were reviewed by a panel of experts from both public and private sectors. They were asked to comment primarily on the comprehensiveness and accuracy of the interpretation of evidence supporting the recommendations in the guidelines.

Chairperson

Dato' Dr. Ahmad Mt Saad
Senior Consultant Ophthalmologist
Hospital Sultanah Bahiyah, Kedah

Members

Dr. Elias Hussein
Head of Department & Senior Consultant Ophthalmologist
Hospital Kuala Lumpur

Dr. Fang Seng Kheong
Consultant Ophthalmologist &
President, Malaysian Society of Ophthalmology

Dr. Junainah Sabirin
Deputy Director
Health Technology Assessment Section (MaHTAS)
Ministry of Health, Putrajaya

Associate Professor Dr. Mimiwati Zahari
Consultant Ophthalmologist
Universiti Malaya, Kuala Lumpur

Dr. Nor Fariza Ngah
Senior Consultant Ophthalmologist &
National Advisor of Ophthalmology Services
Hospital Shah Alam, Selangor

Professor Dr. Tong Seng Fah
Consultant Family Medicine Specialist
Universiti Kebangsaan Malaysia, Kuala Lumpur
EXTERNAL REVIEWERS (in alphabetical order)

The following external reviewers provided feedback on the draft:

Professor Dr. Abdul Mutalib Othman
Consultant Ophthalmologist & Medical Lecturer
Faculty of Medicine, Universiti Sultan Zainal Abidin, Terengganu

Dr. Augusto Azuara-Blanco
Professor of Ophthalmology, Queen’s University Belfast,
Honorary NHS Consultant Ophthalmologist, BHSCT,
Institute of Clinical Sciences,
Belfast, United Kingdom

Dr. Chieng Lee Ling @ Lee Ong
General Ophthalmologist
Hospital Miri, Sarawak

Associate Professor Dr. Syril Dorairaj
Consultant in Ophthalmology, Glaucoma & Anterior Segment Surgery,
Director, International Council of Ophthalmology Fellowship,
Mayo Clinic, Florida, United States of America

Dr. Ivan Goldberg
Clinical Associate Professor, Discipline of Ophthalmology, University of Sydney,
Head, Glaucoma Unit, Sydney Eye Hospital,
Director, Eye Associates,
Sydney, Australia

Ms. Noor Zahirah Husain
Head of Optometrist Profession of Ministry of Health
Hospital Kuala Lumpur, Kuala Lumpur

Professor Emerita Dr. Norhani Mohidin
Head of Pusat Pengajian Optometri
Fakulti Sains Kesihatan, Universiti Teknologi MARA, Selangor

Dr. Nurhayati Isa
Consultant Family Medicine Specialist
Klinik Kesihatan Padang Rengas, Kuala Kangsar, Perak

Dr. Vivian Gong Hee Ming
Consultant Ophthalmologist
Eye Clinic, Gleneagles Penang, Pulau Pinang
ALGORITHM 1. CLASSIFICATION OF GLAUCOMA BASED ON ANGLE CONFIGURATION

- POAG = primary open angle glaucoma
- OHT = ocular hypertension
- NTG = normal tension glaucoma
- PAC = primary angle closure
- PACG = primary angle closure glaucoma
ALGORITHM 2. CLASSIFICATION OF PRIMARY OPEN ANGLE GLAUCOMA/OCULAR HYPERTENSION/PRIMAR Y OPEN ANGLE GLAUCOMA SUSPECT

*ONH and/or peripapillary RNFL appearance and VF changes are suggestive of, but not definitive for glaucoma

Modified: National Collaborating Centre for Acute Care. Glaucoma: Diagnosis and management of chronic open angle glaucoma and ocular hypertension. London: RCS; 2009
ALGORITHM 3. CLASSIFICATION OF PRIMARY ANGLE CLOSURE
SUSPECT/PRIMARY ANGLE CLOSURE/PRIMARY ANGLE CLOSURE GLAUCOMA

*ONH and/or peripapillary RNFL appearance is suggestive of, but not definitive for glaucoma

ITC = iridotrabecular contact
IOP = intraocular pressure
ONH = optic nerve head
VF = visual field
PAS = peripheral anterior synechiae
PACS = primary angle closure suspect
PAC = primary angle closure
PACG = primary angle closure glaucoma
ALGORITHM 4. SETTING THE TARGET IOP

The above factors need to be considered as a whole in deciding the individual target pressure required.

*Consider central corneal

ALGORITHM 5. ADJUSTMENT OF TARGET IOP

1. Determine target IOP
2. Prescribe treatment accordingly
3. If target IOP achieved in 6 - 8 weeks, go to Follow-up 4 - 6 months.
4. If target IOP has not been achieved, switch/add second medication.
5. If target IOP achieved in 6 - 8 weeks, go to Follow-up 4 - 6 months.
6. If target IOP has not been achieved, refer to Glaucoma specialist.
7. If there is progression, consider lower target IOP.
8. If there is no progression, follow-up 4 - 6 months.

1. INTRODUCTION

Glaucoma is a chronic eye disease that damages the optic nerve, and can result in serious vision loss and irreversible blindness. It is the second leading cause of blindness worldwide.¹ Individuals with glaucoma are often asymptomatic and present at a late stage. Blindness from glaucoma is preventable if treatment is instituted early. The number of persons estimated to be blind as a result of primary glaucoma is 4.5 million, accounting for slightly more than 12% of all global blindness.² In Malaysia, the 2014 National Eye Survey II showed an estimated prevalence of blindness in those aged 50 and above was at 1.2% [presenting visual acuity (VA) <3/60 in the better eye] of which 6.6% was caused by glaucoma.³

As with any other chronic diseases, the management of glaucoma may be a burden on the economy. The direct and indirect economic impact of glaucoma on the population has been studied. The direct cost estimates for approximately two million citizens of United States of America and 300,000 citizens of Australia with glaucoma are USD2.99 billion⁴ and AUD144.2 million⁵ respectively. However, the true cost is probably higher as about half of the patients with glaucoma are unaware they have the disease.⁶-⁹

Resource use and direct cost of glaucoma management increase with worsening disease. The average direct cost of treatment ranges from USD623 per patient/year for glaucoma suspects or patients with early stage disease to USD2511 per patient/year for patients with end-stage disease. Medication costs composed the largest proportion of total direct cost for all stages of disease (24 - 61%).¹⁰ A similar trend is seen in Europe where resource utilisation and direct medical costs of glaucoma management increase with worsening disease severity. The direct cost of treatment is increased by an estimated €86 for each incremental step ranging from €455 per patient/year for stage 0 to €969 per patient/year for stage IV disease. Medication costs range from 42% to 56% of total direct cost for all stages of disease.¹¹

In East Asia, primary angle closure glaucoma (PACG) is an important cause of blindness. The cost of managing acute PACG in Singapore, which affects 12.2 per 100,000/year in those aged 30 and older is estimated annually to be USD261,742.¹²

The first edition of the Clinical Practice Guideline (CPG) published in 2008 was confined to POAG. Many new developments have emerged which led to variation in clinical practice. Based on this, the CPG has been updated and the scope widened to include PACG and special conditions. It aims to guide healthcare providers on evidence-based management of glaucoma in the Malaysian healthcare setting.
1.1 Epidemiology

Glaucoma is the leading cause of irreversible blindness. The global prevalence of POAG is 3.05% (95% CI 1.69 to 5.27) and PACG 0.50% (95% CI 0.11 to 1.36). Overall prevalence of glaucoma in Asia is 3.54%. POAG is the predominant glaucoma subtype, followed by PACG and secondary glaucoma with prevalence of 2.34% (95% CI 0.96 to 4.55), 0.73% (95% CI 0.18 to 1.96%) and 0.47% (95% CI 0.09 to 1.48) respectively.

Across ethnicity, people of African origin have the highest prevalence of glaucoma (6.11%, 95% CI 3.83 to 9.13) and POAG (5.4%, 95% CI 3.17 to 8.27). While Asians have the highest prevalence of PACG (1.2%, 95% CI 0.46 to 2.55).

1.2 Definition and Classification

- Glaucoma is a chronic disease with progressive optic neuropathy characterised by morphological changes of the optic nerve head (ONH) and retinal nerve fibre layer (RFNL) with corresponding visual field (VF) defect.
- In primary glaucoma, there are no identifiable causes.
- Based on the angle configuration, glaucoma is further divided into open angle and closed angle/angle closure.
 - In both types, there are risk factors i.e. ocular hypertension (OHT), primary open angle glaucoma (POAG) suspect, primary angle closure suspect (PACS) and primary angle closure (PAC). Refer to Algorithm 1.

- Primary open angle disease can be classified as:
 - OHT - presence of high IOP without glaucomatous optic neuropathy (GON) and VF changes.
 - POAG suspect - presence of normal IOP with suspicious ONH and/or VF changes.
 - POAG - presence of GON with corresponding VF defect.
Refer to Algorithm 2 on Classification of Primary Open Angle Glaucoma/Ocular Hypertension/Primary Open Angle Glaucoma Suspect.

- Primary angle closure disease can be classified as:
 - primary angle closure suspect (PACS) - presence of appositional contact between peripheral iris and posterior trabecular meshwork (TM)
 - primary angle closure (PAC) - presence of occludable drainage angle with evidence of peripheral anterior synechiae (PAS), elevated intraocular pressure (IOP), iris whorling, glaukomflecken, lens opacities or excessive pigment deposition on TM without glaucomatous optic nerve damage
 - primary angle closure glaucoma (PACG) - PAC with evidence of glaucomatous optic nerve damage

Refer to Algorithm 3 on Classification of Primary Angle Closure Suspect/Primary Angle Closure/Primary Angle Closure Glaucoma.

PAC and PACG can present with or without acute angle closure (AAC). In Malaysian population, more than half do not present with AAC.16 - 17, level III
2. RISK FACTORS

The identification of risk factors for POAG and PACS/PAC/PACG is important in their individual disease management.

2.1 Risk Factors for Primary Open Angle Glaucoma

2.1.1 Non-Ocular Factors

a. Advancing/older age

- Advancing age is a risk of POAG.18 - 20, level II-2
- The overall prevalence of open angle glaucoma (OAG) by age was 0.3 (95% CI 0.1 to 0.5) in people aged 40 years and increased steeply to 3.3% (95% CI 2.5 to 4.0) in people aged 70 years.21, level I

b. Ethnicity/race

- Individuals of West African, Afro-Caribbean or Hispanic/Latino ethnicity have a higher prevalence of POAG.22

c. Positive family history among first-degree relatives (parents or siblings)

- Multiple genetic factors are likely to play a role.15
- Positive family history of glaucoma is associated with 3-fold increased risk of POAG.21, level I; 23, level III
- Individuals with family history of glaucoma among siblings are four times more likely to develop glaucoma compared to two times for those whose parents have glaucoma. However, individuals whose children had a history of glaucoma are not at risk.22

d. Obstructive Sleep Apnoea Syndrome

- Obstructive Sleep Apnoea (OSA) syndrome is associated with significantly increased risk of glaucoma.24, level III; 25, level II-2; 26, level III; 27, level II-2

e. Diabetes mellitus

- Diabetes mellitus (DM) is associated with an increased risk of glaucoma (RR=1.37, 95% CI 1.20 to 1.57).28, level II-2

2.1.2 Ocular factors

a. Intraocular pressure

- Elevated IOP significantly increases risk of POAG.19 - 20, level II-2; 23, level III
- The diurnal variation of IOP is greater in glaucoma patients compared with normal individuals.22
- Asymmetry of IOP by ≥3 mmHg between the two eyes is suspicious of glaucoma.22
b. **Central Corneal Thickness**
 - Thinner central corneal thickness (CCT) is associated significantly with risk of glaucoma.\(^{19 - 20}\), level II-2

c. **Myopia**
 - Myopia is significantly more prevalent in patients with POAG.\(^{23}\), level III
 - Myopic refractive error > -6 D may be a risk factor associated with glaucomatous optic neuropathy.\(^{29}\), level III

d. **Corneal hysteresis**
 - Corneal hysteresis is a risk factor for progression of glaucoma. \(30, \) level II-2; \(31, \) level III

2.1.3 **Other Possible Risk Factors**
- Higher systolic and diastolic blood pressure\(^{23}\), level III
- Higher systolic perfusion pressure\(^{23}\), level III
- Larger vertical CDR\(^{19 - 20}\), level II-2
- Larger vertical CDR asymmetry\(^{19}\), level II-2
- Higher pattern standard deviation (PSD) on Humphrey VF test \(19 - 20, \) level II-2
- Male gender\(^{18}\), level II-2

2.2 **Risk Factors for Primary Angle Closure Suspect/Primary Angle Closure Glaucoma**

2.2.1 **Non-Ocular Factors**
 a. **Advancing/older age**
 - Increasing age is a risk factor for angle closure disease.\(^{32 - 34}\), level III

 b. **Positive family history**
 - OR=1.65, 95% CI 1.16 to 2.34\(^{33}\), level III

2.2.2 **Ocular Factors**
 a. **Elevated intraocular pressure**
 - Increased IOP is a risk factor for PACG.\(^{32 - 33}\), level III

 b. **Biometric measurement**
 These include:
 - Decreasing axial length\(^{34}\), level III
 - Decreasing anterior chamber depth\(^{34}\), level III
 - Increased choroidal thickness\(^{35}\), level III

2.2.3 **Other possible risk factors**
 - DM (OR=3.18, 95% CI 1.34 to 7.58)\(^{32}\), level III
 - Female (OR=2.07, 95% CI 1.09 to 3.9)\(^{32}\), level III
 - Nuclear cataract (OR=1.23, 95% CI 1.01 to 1.48)\(^{34}\), level III
Recommendation 1
• Risk factors* should be identified in the management of glaucoma.

*Refer to the preceding text.

3. SCREENING

Screening of glaucoma aims to identify individuals at risk or early stage of the disease to prevent or reduce blindness.

There is no strong evidence to advocate population-based screening for glaucoma.22; 36, level I; 37, level III

However, screening should be considered for higher risk groups at the age of 40 years and be carried out by trained healthcare providers.21, level I; 22; 37, level III

There is no single test or a group of tests that is accurate for glaucoma screening.38, level II-2 However, combination of optic disc (OD) assessment, RNFL assessment, tonometry and VF may be used.

Recommendation 2
• Population-based screening for glaucoma is not advocated.
• Screening of glaucoma should be considered for patients with risk factors especially:
 o age >40 years
 o family history of glaucoma
 o diabetes mellitus

Refer to Chapter on Risk factors for further details.
4. DIAGNOSIS

- Most glaucoma patients are asymptomatic. Their VA can remain normal even at advanced stages of the disease. As such, they are usually diagnosed during routine visit to eye care professionals for other eye problems.

The diagnosis of glaucoma is based on history (including presence of risk factors) and eye examination (ONH, RNFL, VF, IOP and gonioscopy). Certain investigations may help in the diagnosis of glaucoma. Confirmation of the diagnosis may require more than one visit.22

4.1 History22

4.1.1 Symptoms
- Asymptomatic
- Reduced vision (acute and/or advanced glaucoma)
- Ocular pain, redness, haloes
- Headache, nausea, vomiting mainly in acute angle closure
- VF defect

4.1.2 Ocular history
- History of ocular surgery, ocular trauma and use of topical steroids
- Refractive status; myopia (POAG), hyperopia >3 Diopter (angle closure)
- Refractive surgery

4.1.3 Systemic history
- Systemic history of DM, hypertension, migraine, Raynauld’s phenomenon and use of systemic steroids
- OSA syndrome

4.1.4 Family history of glaucoma

4.1.5 Other risk factors (refer to Chapter 2)

4.2 Examination22

4.2.1 Visual acuity
- Usually normal but may be reduced in acute or advanced glaucoma
4.2.2 **Pupil**
- Mid-dilated pupils (in AAC)
- Posterior synechiae
- Relative afferent pupillary defect in asymmetrical cases

4.2.3 **Anterior chamber and lens**
- Depth of anterior chamber (shallow in patient with PAC)
- PAS
- Iris whorling and/or atrophy
- Anterior subcapsular opacities (glaukomflecken)
- Cataract

4.2.4 **Intraocular pressure measurement**
- IOP should be measured preferably with Goldmann applanation tonometry (GAT) which is the gold standard.
- In non-ambulatory patients and those who have corneal disease, alternative tonometry such as tonopen, rebound tonometer etc. can be used.
- CCT needs to be measured with a pachymeter.
- Time of measurement should be recorded as IOP varies at different times of the day; peaks are often before noon.

| Acute angle closure (AAC) is diagnosed when IOP >21 mmHg with occludable angle in the presence of: |
| 1. any two of the following symptoms |
| o ocular and periocular pain |
| o nausea and/or vomiting |
| o history of blurring of vision and haloes |
| AND |
| 2. any three of the following signs |
| o conjunctival injection |
| o corneal epithelial oedema |
| o mid-dilated unreactive pupil |
| o shallow anterior chamber |

4.2.5 **Assessment of the angle**
- Slit Lamp Examination of angles (Van Herick test, a slit lamp estimation of the angle depth - refer to **Appendix 3**)

- Gonioscopy
 - Evaluation of the angle is needed to determine the type of glaucoma.
 - The angle is considered open when gonioscopic findings (without indentation) show grades III or IV based on Shaffer’s classification and it is considered narrow at grade II or less.
Refer to Table 1 on Gonioscopic chart and grading system.

- Gonioscopy should always be performed in a dark room with a narrow slit beam, making sure that the beam does not enter the pupil which can cause the pupil to constrict.\(^{39}\), level III
- Indentation/dynamic gonioscopy is essential to:
 - differentiate appositional from synechial angle closure in patients with suspected angle closure
 - detect plateau iris configuration

Refer to Appendix 4 on Indentation/Dynamic Gonioscopy.

Table 1. Gonioscopic chart and grading system for gonioscopic findings (without indentation)

<table>
<thead>
<tr>
<th>Grade</th>
<th>0</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaffer</td>
<td>Closed</td>
<td>10°</td>
<td>20°</td>
<td>30°</td>
<td>40°</td>
</tr>
<tr>
<td>Modified Schaffer</td>
<td>Schwalbe’s line is not visible</td>
<td>Schwalbe’s line is visible</td>
<td>Anterior *TM is visible</td>
<td>Scleral spur is visible</td>
<td>Ciliary band is visible</td>
</tr>
</tbody>
</table>

*TM=trabecular meshwork

4.2.6 Assessment of the optic disc and retinal nerve fibre layer

- Assessment should be done through a dilated pupil unless contraindicated. It can be done with:
 - slit lamp biomicroscopy using high power condensing lens (recommended method)
 - stereoscopic OD photography
 - red free illumination (either on slit lamp or photography)
 - direct ophthalmoscopy (limited to OD assessment)
- The OD should be examined for (refer to Appendix 4):
 - OD size
 - increase in the vertical CDR*
 - Inferior Superior Nasal Temporal (ISNT) rule (whereby the thickest neuro-retinal rim (NRR) is inferior and thinnest is temporal)
 - NRR notching or acquired pit of the OD*
 - asymmetry CDR between OD >0.2*
 - OD haemorrhage
 - nasalisation and bayonetting of retinal vessels
 - peripapillary beta zone atrophy
- RNFL should be examined for thinning or loss (slit/wedge defects)**. Refer to Appendix 5.

*features that are indicated for referral by primary care providers to ophthalmology service

**feature seen in fundus photo for referral by primary care providers to ophthalmology service
4.3 Investigation

4.3.1 Automated visual field analysis*

- **Standard Automated Perimetry (SAP)**
 - Automated static threshold perimetry is currently the gold standard for VF assessment.
 - Commonly used threshold algorithms are Swedish Interactive Threshold Algorithm (SITA) Standard and SITA Fast in the Humphrey perimeter. Other available algorithms such as “Dynamic Strategy” in the Octopus perimeter may be used.
 - For those with very advanced disease, it may be necessary to consider:
 - Goldmann size V stimulus rather than size III
 - a perimetric strategy which focuses more closely on the remaining area of VF (Octopus M1 or M2 or the Humphrey 10-2)

- **Non-conventional perimetry**
 - There is insufficient evidence that Short Wave Automated Perimetry and Frequency Doubling Threshold Perimetry has any advantage over SAP.15

*In VF assessment, the tests must be reliable and reproducible.

VF defects suggestive of POAG are:

- classical defects - paracentral scotoma, nasal step and arcuate scotoma; temporal wedge is an uncommon feature
- early defects on SAP
 - Glaucoma hemifield test (GHT) graded as outside normal limits
 - a minimum of three clustered points (non-edge points) with significantly depressed sensitivity, of which one should have a significance of p<1% on the pattern deviation plot
 - p-value of PSD <5%

4.3.2 Optic nerve head and retinal imaging

- In centres with Optical Coherence Tomography (OCT) machines, global RNFL is the best parameter to detect early glaucomatous structural damage.40, level III
- Confocal scanning laser opthalmoscopy (CSLO) may be used to detect structural change and the rate of rim area loss.41, level I

4.3.3 Central Corneal Thickness

- Mean CCT measurement is 540 ± 30 µm (mean ± standard deviation in µm).15
- CCT affects IOP measurement. Thus, measurement of CCT is important as it aids in patient’s management.22 However there is no validated conversion table.
- Thin CCT will result in falsely low IOP readings and vice versa.22

4.3.4 Anterior Segment Optical Coherence Tomography

- Anterior Segment Optical Coherence Tomography (AS-OCT) is a rapid non-contact method of imaging the angle structures anterior to the ciliary body.
• AS-OCT tends to detect more angle closure compared with gonioscopy (gold standard).42, level III

4.4 Staging of Glaucoma

The staging of glaucoma is based on SAP as shown in Table 2.

Table 2. Staging of Glaucoma

<table>
<thead>
<tr>
<th>Stage: Humphrey MD score</th>
<th>Additional Criteria (at least one of the listed criteria must apply)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 0: No or Minimal Defect</td>
<td>• Does not meet any criteria for Stage 1</td>
</tr>
<tr>
<td>Stage 1: Early Defect $< -6.00 \text{ dB}$</td>
<td>• A cluster of ≥3 points on the pattern deviation plot in an expected location of the VF depressed below the 5% level, at least one of which is depressed below the 1% level</td>
</tr>
<tr>
<td></td>
<td>• Corrected PSD/PSD significant at $p<0.05$</td>
</tr>
<tr>
<td></td>
<td>• GHT outside normal limits</td>
</tr>
<tr>
<td>Stage 2: Moderate Defect ≥ -6.00 to -12.00 dB</td>
<td>• $\geq 25%$ but $<50%$ of points on the pattern deviation plot depressed below the 5% level, and $\geq 15%$ but $<25%$ of points depressed below the 1% level</td>
</tr>
<tr>
<td></td>
<td>• At least one point within the central 5° with sensitivity of $<15 \text{ dB}$ but no points in the central 5° with sensitivity of $<0 \text{ dB}$</td>
</tr>
<tr>
<td></td>
<td>• Only one hemifield containing a point with sensitivity $<15 \text{ dB}$ within 5° of fixation</td>
</tr>
<tr>
<td>Stage 3: Advanced Defect ≥ -12.01 to -20.00 dB</td>
<td>• $\geq 50%$ but $<75%$ of points on pattern deviation plot depressed below the 5% level and $\geq 25%$ but $<50%$ of points depressed below the 1% level</td>
</tr>
<tr>
<td></td>
<td>• Any point within the central 5° with sensitivity $<0 \text{ dB}$</td>
</tr>
<tr>
<td></td>
<td>• Both hemifields containing a point(s) with sensitivity $<15 \text{ dB}$ within 5° of fixation</td>
</tr>
<tr>
<td>Stage 4: Severe Defect $\geq -20.00 \text{ dB}$</td>
<td>• $\geq 75%$ of points on pattern deviation plot depressed below the 5% level and $\geq 50%$ but $<50%$ of points depressed below the 1% level</td>
</tr>
<tr>
<td></td>
<td>• At least 50% of points within the central 5° with sensitivity $<0 \text{ dB}$</td>
</tr>
<tr>
<td></td>
<td>• Both hemifields containing $>50%$ of points with sensitivity $<15 \text{ dB}$ within 5° of fixation</td>
</tr>
<tr>
<td>Stage 5: End-Stage Disease</td>
<td>• Unable to perform HVF in worst eye due to central scotoma or worst eye VA 6/60 or worse due to POAG.</td>
</tr>
<tr>
<td></td>
<td>• Fellow eye may be at any stage.</td>
</tr>
</tbody>
</table>

Recommendation 3
• Glaucoma diagnosis should be made based on a combination of history (with presence of risk factors), ocular examination and investigation.
 o Essential ocular examination includes intraocular pressure measurement, optic disc assessment and gonioscopy.
 o Essential investigations include reliable visual field test.
5. TREATMENT

The aim of glaucoma treatment is to preserve maximal functional vision throughout a patient’s lifetime without sacrificing his/her quality of life (QoL) and at a sustainable cost. QoL is affected by visual function, treatment regime and its adverse effects, financial burden of the treatment and the psychological effect of having a potentially blinding disease.

5.1 Principles of Treatment

Currently, lowering of IOP is the only proven efficient approach in preventing progression of glaucoma.22 The risk of progression is decreased by 10% with each mmHg of IOP reduction from baseline to the first follow-up visit (HR=0.90 per mmHg decrease, 95% CI 0.86 to 0.94).43, level I IOP lowering can be achieved by either medication, laser treatment, surgery or any combination of these modalities.

Target IOP is an estimate of mean IOP at which further glaucomatous damage is likely to be prevented. It should be tailored to individual patients and may be adjusted during the course of the disease. It is set based on the following factors:22

- pre-treatment IOP
- stage of optic nerve damage and VF defects
- rate of glaucoma progression
- age, life expectancy and visual requirements of the patient
- presence of glaucoma risk factors

Refer to Algorithm 5 on Setting the Target IOP.

In ocular hypertension (OHT), a treatment target IOP of ≤24 mmHg and IOP reduction of ≥20% from baseline is recommended.44, level I

In established glaucoma:
- a 25% IOP reduction from baseline is protective against progression in early (mild) glaucoma43, level I
- non-progression is seen in mild to moderate glaucoma with a mean IOP of 16.5 mmHg45, level I
- an IOP of >14 mmHg is associated with greater worsening of VF defect in advanced stage46, level II-2
- a 30% IOP reduction from baseline is protective against progression in NTG47, level I
- non-progression is seen in mild to moderate PACG with IOP <12 mmHg in a local Malaysian population48, level II-2
Based on the above findings and existing guidelines, the following target IOP is suggested by the CPG DG (refer to Table 3).

Table 3. Suggested target IOP according to stage of glaucoma

<table>
<thead>
<tr>
<th>Stage of glaucoma</th>
<th>Target IOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHT (if decision is made to treat)</td>
<td>≤24 mmHg with reduction of at least 20% from baseline IOP</td>
</tr>
<tr>
<td>Early (mild) disease</td>
<td>≤20 mmHg with reduction of at least 25% from baseline IOP</td>
</tr>
<tr>
<td>Moderate disease</td>
<td>≤17 mmHg with reduction of at least 30% from baseline IOP</td>
</tr>
<tr>
<td>Advanced disease</td>
<td>≤14 mmHg with reduction of at least 30% from baseline IOP</td>
</tr>
</tbody>
</table>

- **Target IOP in glaucoma**
 - should be individualised.
 - can be adjusted throughout the management of the condition*

*Refer to **Algorithm 5** on **Setting the Target IOP**.

In AAC, the aims of treatment are to lower the IOP urgently and relieve the acute symptoms. These are achieved by multiple modalities. Refer to **Appendix 6**.

5.2 Medical Treatment

Medical treatment is usually the initial treatment of choice in glaucoma. It includes the use of topical and systemic anti-glaucoma medications that increase aqueous outflow, reduce aqueous production or both.

- **Criteria for prescribing anti-glaucoma medications are:**
 - patient’s characteristics (stage of glaucoma, age, risk factors, co-morbidities, compliance, psychological and socio-economic status)
 - drug factors (efficacy, safety, dosing regimen, preservative/non-preservative, cost and availability of the drug)

There are six main pharmacologic classes of anti-glaucoma medications which can be used as monotherapy or in combination therapy. They are:

- prostaglandin analogues
- beta-blockers
- adrenergic agonists
- carbonic anhydrase inhibitors (CAIs)
- cholinergic agents
- osmotic agents
5.2.1 Prostaglandin analogues
Prostaglandin analogues are the first choice/first-line medications in glaucoma treatment. They have the highest IOP lowering effect and minimal systemic side effects among all topical anti-glaucoma medications. Their once daily dosing enhances compliance.22

In a good meta-analysis of high quality RCTs, bimatoprost was significantly more efficacious in lowering IOP compared with latanoprost and travoprost at different time points in a day for POAG and OHT at 1 - 6 months follow-up.50, level I The results on efficacy were supported by three meta-analysis conducted after that.51 - 53, level I

A meta-analysis of 15 RCTs on normal tension glaucoma showed that prostaglandin analogues (latanoprost and bimatoprost) were the most significantly efficacious IOP-lowering medications compared with other medications on short-term follow-up (0.5 - 3 months).54, level I

In chronic angle closure glaucoma (or PACG), prostaglandin analogues (latanoprost, travoprost and bimatoprost) are significantly efficacious in lowering IOP from baseline at 1 - 3 months and the IOP reduction is greater than timolol.55, level I

In terms of side effects, the incidence of hyperaemia is significantly more in bimatoprost compared with latanoprost and travoprost.50, level I; 56, level I

5.2.2 Beta-blockers
Beta-blockers are commonly used as anti-glaucoma medications. Currently, they are used as either first- or second-line medications in patients with no contraindications. There are two types of beta-blocker available which are selective and non-selective agents.

Beta-blockers are efficacious as monotherapy51, level I; 54, level I; 55 - 57, level I and adjunctive therapy58, level I in all types of glaucoma.

Topical beta-blockers can be the first-line medications when considering medical treatment of glaucoma in pregnancy. There is no significant difference in the risk of low birth weight infants between mothers prescribed with beta-blockers and those in the comparison cohort (OR=1.48, 95% CI 0.86 to 2.56).59, level III

• Beta-blockers are contraindicated in individuals with:
 o respiratory problems such as asthma and chronic obstructive pulmonary disease
 o cardiac problems such heart block, cardiac failure and bradycardia

• Important systemic side effects of beta-blockers are bronchospasm, bradycardia, cardiac failure and syncope.
5.2.3 Adrenergic agonists
Brimonidine is efficacious as an adjunctive therapy\(^5\)\(^8\), level I but in selected cases, it may be used as a monotherapy. Its common side effect is ocular allergy.

- Adrenergic agonists are contraindicated in individuals on monoamine oxidase inhibitor therapy.
- Side effects of adrenergic agonists include burning sensation and hyperaemia.

5.2.4 Carbonic anhydrase inhibitors
CAIs are available in topical and systemic forms. They are efficacious as an adjunctive therapy.\(^5\)\(^8\), level I In selected cases, they may be used as monotherapy. Long-term use of systemic CAIs is not advisable due to their possible serious side effects.

- CAIs are contraindicated in individuals with:
 - sulphonamide allergy
 - renal calculi or failure
 - respiratory/metabolic acidosis and hypokalaemia
- Important systemic side effects of CAIs are:
 - Stevens-Johnson syndrome
 - angioedema
 - metabolic acidosis
 - electrolyte imbalance
 - blood dyscrasias

5.2.5 Cholinergic agents
Topical pilocarpine is mainly used as short-term, pre-laser treatment of patients with narrow angle. Its long-term use is not favoured due to its side effects (such as blurred vision, peri-orbital pain and stinging) and frequent dosing i.e. four times a day.\(^2\)\(^2\)

5.2.6 Osmotic agents
Osmotic agents are only available as systemic therapy. They are usually used in acute situations when rapid IOP reduction is desired. Commercially available agents are oral glycerol and intravenous mannitol.\(^2\)\(^2\)
• Osmotic agents are contraindicated in individuals with:
 o cardiac disease
 o renal disease
• Important systemic side effects of osmotic agents are:
 o dehydration
 o cardiac failure
 o hyponatraemia
 o acute renal failure
• Osmotic agents may cause hyperglycaemia in diabetic patients.

5.2.7 Fixed combination medications
Several fixed combination medications have been developed to maximise patient’s compliance and QoL. Most fixed combination medications contain timolol as one of its components.

The six commonly used fixed combination medications significantly reduce IOP from baseline and the combination of prostaglandin analogue and timolol have the highest IOP reduction between 33.9% and 34.9%. 60, level I

Fixed combination medications are equally safe and efficacious at lowering IOP compared with their non-fixed components. Three main ocular side effects are hyperaemia, ocular irritation and keratitis which are more frequent in non-fixed combination.61, level I

Fixed combination provides significantly improved long-term adherence compared with non-fixed combination in glaucoma treatment.62, level I

Combination treatment, either as fixed or non-fixed, is not recommended as first-line treatment.15
General Principles in Medical Treatment in Glaucoma

- Determine an individualised target IOP and readjust treatment if necessary throughout the course of disease.
- Diagnostic parameters to be considered in deciding on anti-glaucoma medications are:
 - IOP levels and/or fluctuations
 - extent of OD damage
 - severity of VF defects
 - CCT
 Baseline parameters should be collected prior to initiating treatment and verified before modifying treatment.
- Choose monotherapy that:
 - provides greatest IOP lowering effects to achieve target IOP
 - has the best safety profiles e.g. least side effects, good tolerability, etc.
 - enhances compliance e.g. simple dosing regimen, minimal disruption to QoL, etc.
 - is available and affordable
- Treatment
 - Treatment is considered effective when the individual target IOP is achieved.
 - If the target IOP is not achieved:
 - switch within prostaglandin analogue or to a different class of medication
 - use adjunctive treatment either non-fixed or fixed combination
 - Generally, if more than two medications are required for IOP control; other forms of treatment should be considered.
- Patient education is important and it includes:
 - nature of the disease
 - benefits and side effects of treatment
 - proper instillation technique of eye drop*
 - importance of compliance (adherence, persistence and follow-up)

*Refer to Appendix 7 on Proper Instillation Technique of Eye Drop. Refer to Appendix 8 on Main Features of Topical Anti-Glaucoma Medications.
Recommendation 4
• In glaucoma treatment, healthcare providers should aim to maintain maximal functional vision throughout a patient’s lifetime without sacrificing his/her quality of life and at a sustainable cost.
• Medical treatment in glaucoma should be individualised based on patient’s characteristics and drug factors, and adjusted according to target intraocular pressure (IOP).
• Prostaglandin analogues should be used as first-line treatment in glaucoma.
• If the target IOP is not achieved in glaucoma, consider switching anti-glaucoma medications or adding adjunctive treatment either non-fixed or fixed combination.
• Patient education should be given to patients with glaucoma. This includes benefits and side effects of treatment, proper instillation technique of eye drop and compliance to treatment.

5.2.8 Neuroprotection in glaucoma
There is insufficient evidence to support that neuroprotective medications are effective in preventing retinal ganglion cell death, and thus preserving vision in people with OAG.63, level I

5.3 Laser Treatment
Laser treatment has become important in the management of glaucoma. It is indicated when medical therapy fails, as an adjunct or as a primary treatment where appropriate. There are several types of laser treatment used to treat glaucoma as shown below.

Types of Laser Treatment in Different Types of Glaucoma
• Open Angle Glaucoma
 o Laser trabeculoplasty for outflow enhancement
 o Trans-scleral cyclophotocoagulation (TSCP) for inflow reduction (usually for end-stage disease)
• Angle Closure (± Glaucoma)
 o Laser iridotomy for pupillary block relief
 o Laser peripheral iridoplasty for modification of iris contour
 o TSCP for inflow reduction (usually for end-stage disease)
• Post-Filtering Surgery
 o Laser suture lysis for outflow enhancement

5.3.1 Laser trabeculoplasty
Laser parameters used for Selective laser trabeculoplasty (SLT) and Argon laser trabeculoplasty (ALT) are shown in Table 4.

Laser trabeculoplasty is initially efficacious in 80 - 85% of treated eyes with a mean IOP reduction of 20 to 25% (6 - 9 mmHg). It is also efficacious and safe in OHT. In a meta-analysis of six RCTs, there was no significant difference of IOP reduction between SLT and ALT up to two years in patients who were naive to laser (first laser trabeculoplasty). There was also no significant difference in adverse events between the two modes of treatment. These were supported by another meta-analysis in 2015, although one of the RCTs included patients treated with ALT. The meta-analysis also showed no difference in efficacy between SLT and medications. The overall safety profile of SLT was good, with most side effects being transient and amenable to medical therapy.

In patients treated previously with ALT or SLT, retreatment with SLT is efficacious and safe in further lowering IOP. SLT 360° is a more effective treatment compared with 90° or 180°. Higher baseline IOP is the main predictor for the success of laser therapy in both SLT and ALT.

Indications for laser trabeculoplasty in open angle glaucoma are:
- failure or intolerance of medical therapy
- adjunct to medical therapy
- primary treatment if appropriate

Complications of laser trabeculoplasty are:
- temporary blurred vision
- IOP spike with possible VF loss
- transient iritis
- PAS if placement of burns is too posterior or post-laser inflammation control is not effective (in ALT)
- endothelial burns if treatment is too anterior (in ALT)
- chronic increase in IOP
- corneo-refractive changes
- suprachoroidal effusion

5.3.2 Laser iridotomy
Laser iridotomy, a relatively non-invasive procedure is efficacious in relieving pupillary block. Complications of laser iridotomy are IOP spikes, temporary blurring of vision and corneal burn. These could be minimised by using proper technique.
Indications for laser iridotomy in angle closure disease are:

- PAC
- PACG
- PACS:
 - absolute indication - PAC in the fellow eye
 - relative indication - need for repeated dilated examination e.g. diabetic patients
 - poor access to regular ophthalmic care
 - confirmed family history of PACG

Refer to Appendix 9 on Laser Iridotomy.

5.3.3 Argon laser peripheral iridoplasty

Argon laser peripheral iridoplasty (ALPI) is a non-invasive procedure. It contracts the peripheral iris which results in widening of the anterior chamber angle and re-opens the appositionally closed segments. However, ALPI is associated with higher failure rates and lower IOP reduction compared with prostaglandin analogues in eyes with persistent appositional angle closure and raised IOP after laser iridotomy.

Indications for ALPI in angle closure disease are as follows:

- initial treatment in acute angle closure attack
- adjunctive measure when systemic medications fail to control IOP
- persistent occludable angle following laser iridotomy
- facilitate access to TM for laser trabeculoplasty
- an adjunct to goniosynechialysis

ALPI is contraindicated in area with PAS.

5.3.4 Cyclophotocoagulation

Cyclophotocoagulation (CPC) is a cyclodestructive procedure that reduces aqueous production by the ciliary epithelium. The procedure may be performed transclerally or endoscopically.

CPC is indicated in the following:

- painful blind eyes or eyes with poor vision
- failed multiple filtering surgeries

It is also may be performed in sighted eyes when the benefits outweigh the risks for incisional surgery.

Complications include:

- pain
- persistent inflammation
- loss of visual acuity
- hypotony and phthisis
- scleral thinning or rupture
- pupillary distortion
• macular oedema
• retinal detachment
• aqueous misdirection syndrome
• sympathetic ophthalmia

Table 4 shows the summary of parameters and lenses for laser treatment.

Table 4. Parameters and lenses for laser treatment

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Laser procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SLT</td>
</tr>
<tr>
<td>Number of spots</td>
<td>30 - 50° (over 180°)</td>
</tr>
<tr>
<td>Spot size</td>
<td>400 µm</td>
</tr>
<tr>
<td>Exposure time</td>
<td>3 nsec</td>
</tr>
<tr>
<td>Fluence (mJ/mm²)</td>
<td>6</td>
</tr>
<tr>
<td>Power</td>
<td>0.4 - 1.4 mJ</td>
</tr>
<tr>
<td>Type of lenses</td>
<td>Latina SLT lens, Goldmann gonioscopy lens, Ritch trabeculoplasty lens, CGA© LASAG/Meridien CH, Magna View Gonio lens</td>
</tr>
</tbody>
</table>

*Refer to Appendix 9.

Recommendation 5

• Laser trabeculoplasty should be considered in primary open angle glaucoma when indicated*.
• Laser iridotomy should be performed in primary angle closure disease when indicated**.
• Peripheral iridoplasty may be considered for initial treatment in acute angle closure.
• Cyclophotocoagulation should be considered in refractory glaucoma.

*Refer to the preceding text.
**Refer to the preceding text.
5.4 Surgical Treatment

Surgery is indicated in glaucoma when the target IOP cannot be reached despite maximal medical therapy or when there is intolerance or non-compliance to medical therapy.22

Available surgical options include trabeculectomy, implantation of glaucoma drainage devices (GDD) and non-penetrating glaucoma surgery.

5.4.1 Trabeculectomy
Trabeculectomy is the primary surgery of choice in POAG.22 However, the development of fibrosis may lead to failure of the surgical procedure. Thus, antimetabolites such as Mitomycin C (MMC) and 5-Fluorouracil are used to improve the success rate.22 Intraoperative MMC reduces the risk of surgical failure in primary trabeculectomy (RR=0.29, 95% CI 0.16 to 0.53).77, level I However, the use of antimetabolites may increase complications such as bleb leaks, hypotony, late-onset blebitis and endophthalmitis.22

5.4.2 Lens extraction
Clear lens extraction has beneficial effect in PAC and PACG with IOP >30 mmHg in terms of QoL (p=0.005) and IOP control (p=0.04) compared with standard laser PI. There is no significant serious adverse events reported.78, level I This procedure should only be performed by an experienced surgeon.

In medically-controlled PACG with co-existing cataract, there are no significant differences in mean IOP between phacoemulsification alone and combined phacotrabeculectomy with adjunctive MMC at 6 - 24 months. However, phacoemulsification alone is associated with less post-operative complications (p<0.001).79, level I

5.4.3 Combined trabeculectomy and lens extraction
In medically-uncontrolled PACG with coexisting cataract, combined phacotrabeculectomy with adjunctive MMC results in significantly lower mean IOP than phacoemulsification alone at three, 15 and 18 months of follow-up. However, combined surgery is associated with higher post-operative complications (p<0.001) and possible progression of optic neuropathy (p=0.03).80, level I

In glaucoma patients who require cataract and filtering surgery, performing cataract surgery after trabeculectomy significantly increases the rates of bleb failure. However, the risk of failure is reduced if lens extraction is performed >6 months post-trabeculectomy.64, level III
5.4.4 Glaucoma drainage devices
The use GDD such as Baerveldt, Ahmed and Molteno are usually reserved for patients with high risk of failure from augmented trabeculectomy. This includes eyes with previous failed filtering surgery, severe conjunctival or ocular surface diseases, active neovascular diseases, paediatric glaucomas or excessive conjunctival scarring.22

Ahmed and Baerveldt implants are as efficacious as trabeculectomy in IOP reduction.81 - 82, level I Although Molteno implant provides better and sustained IOP reduction,83, level II-2 there is no clinical trial to support this. Baerveldt implant has a higher qualified success rate than trabeculectomy at 5-year follow-up.82, level I

Based on two multi-centre RCTs, Baerveldt implant had greater IOP reduction compared with Ahmed implant at 3 - 5 years of follow-up. However, serious complications occurred less frequently in Ahmed implant.84 - 85, level I Ahmed and Baerveldt implants have similar rate of complications compared with trabeculectomy.81 - 82, level I However, a lower rate of persistent hypotony has been reported with Baerveldt implant compared to trabeculectomy.82, level I

5.4.5 Others (non-penetrating glaucoma surgery and minimally invasive glaucoma surgery)
Deep sclerostomy and viscocanalostomy are types of non-penetrating glaucoma surgery.22 There is limited evidence on viscocanalostomy or deep sclerostomy resulting in better IOP control compared with trabeculectomy.86, level I Thus it is not suitable for patients who need low target IOP. Its advantages over trabeculectomy include lower risk of post-operative hypotony and bleb infection.22

Minimally invasive glaucoma surgery is a group of procedures which include ab-interno and ab-externo techniques which aims for less tissue manipulation and side effects compared with standard filtering surgery. However, there is no good evidence to show its efficacy.15

Recommendation 6
• Intraoperative Mitomycin C during trabeculectomy should be used in glaucoma patients at risk of surgical failure.
• Early lens extraction may be considered as first-line treatment in primary angle closure and primary angle closure glaucoma.
• Glaucoma drainage devices may be offered in the treatment of refractory glaucoma.
6. FOLLOW-UP

Glaucoma patients need to be followed-up to monitor the effects of treatment, and to detect disease progression and any changes in patient’s risk profile and systemic health that may affect glaucoma management plan.22

Currently there is no retrievable evidence on this matter. The CPG DG uses existing guidelines15; 64, level III; 87; 88 and their expert opinion to address issues on follow-up schedule of glaucoma patients.

During each review, the following should be elicited:22

• History
 o Ocular history
 o Medical and drug history
 o Local and systemic problems with ocular medications
 o General assessment of the impact of visual function on daily living
 o Frequency and time of last IOP lowering medications
 o Verification of compliance

• Ocular examination
 o VA in both eyes
 o IOP measurement in both eyes
 o Slip lamp for external eye examination
 o ONH evaluation
 o Gonioscopy, VF, ONH and RFNL (imaging/photography) are done according to the follow-up schedule or when indicated

The following are the recommended follow-up schedule for patients with glaucoma based on the target IOP and disease progression (refer to Table 5). However, it should be individualised according to the severity of disease and risk factors.
Table 5. Follow-up schedule for glaucoma and related conditions

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Follow-up schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHT</td>
<td>Refer to Subchapter 10.1</td>
</tr>
<tr>
<td>POAG suspect</td>
<td>Refer to Subchapter 10.2</td>
</tr>
</tbody>
</table>
| POAG and PACG | **Target IOP achieved:**
 | No : 1 - 2 months |
 | Yes : 4 - 6 months |
 | **Disease progression (structural and functional):** |
 | Yes : 3 - 6 months |
 | No : 6 - 12 months |

*Disease progression supersedes target IOP in determining interval of follow-up.

The following are the recommended investigations schedule for glaucoma patients and related conditions (refer to Table 6).

Table 6. Investigations schedule for glaucoma and related conditions

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>VF</th>
<th>Gonioscopy</th>
<th>OD image</th>
<th>CCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHT</td>
<td>Refer to Subchapter 10.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POAG Suspect</td>
<td>Refer to Subchapter 10.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open angle glaucoma</td>
<td>Stable: Yearly Progression: 4 - 8 months</td>
<td>Baseline and when indicated</td>
<td>Every 1 - 2 years</td>
<td>Baseline or when indicated</td>
</tr>
<tr>
<td>Angle closure glaucoma</td>
<td>Stable: Yearly Progression: 4 - 8 months</td>
<td>Baseline, post-laser iridotom and 3-yearly or when indicated</td>
<td>Every 1 - 2 years</td>
<td>Baseline or when indicated</td>
</tr>
</tbody>
</table>
7. MONITORING OF PROGRESSION

Patients with glaucoma require life-long treatment and monitoring. Adjustment of treatment and target IOP depends on the evaluation of glaucoma progression (refer to Algorithm 5 on Adjustment of Target IOP). It is important to assess both optic nerve structure and function in detecting progression. The use of functional test may fail to detect progression in eyes with early glaucomatous damage. On the other hand, structural test may fail to detect progression in moderate to severe glaucomatous damage.89, level III

7.1 Visual Field Assessment (Functional Test)

VF assessment using the white-on-white SAP is still considered to be the best method to monitor glaucomatous progression in patients with evident VF damage. It has direct relevance to patient’s QoL. Although there is no standard method, there are several approaches used to analyse VF progression:90, level III

- clinical judgement (based on the simple observation of a sequential series of VF tests)
- defect classification systems (usually used in research setting)
- trend analysis (regression analyses to measure rates of change)
- event analysis (comparison of a follow-up examination to the baseline VF)

Estimating the rate of progression is invaluable to guide therapeutic decisions and estimate the likelihood of visual impairment during the patient’s lifetime.

- Changes in VF are determined by the:89, level III; 91, level III
 o same SAP strategy and test pattern
 o threshold tests using full threshold and SITA standard testing strategies
 o sufficient number (minimum two) of reliable tests to establish a good baseline
 o sufficient number of examinations to detect change
- Six VF examinations should be performed in the first two years to detect rapid progression (-2 dB/year or worse) and establish a good set of baseline data.15
- VF progression should be correlated with clinical findings.
7.2 Optic Nerve and Retinal Nerve Fibre Layer Evaluation (Structural Test)

Imaging of the optic nerve and RNFL allows objective, standardised and reproducible ways to assess and continuously monitor glaucomatous damage. Three types of computer-based optic nerve imaging devices are available for glaucoma: 92

- CSLO
- OCT

To determine the progression of glaucoma, progression analysis programmes are being incorporated into the above devices using the patients’ baseline images as references. Currently these programmes are still unable to predict future functional loss. Good quality images are important to facilitate progression analysis as poor quality image can lead to false positive or negative results. 89

Frequency of imaging should be similar to VF testing. Six imaging tests should be performed in the first two years to detect progression in high risk patients. A repeat imaging should be performed within three months after the baseline. Patients should be followed-up with the same test/method to monitor progression. 15

- Imaging alone does not replace VF testing in monitoring progression.
8. REHABILITATION

Glaucoma could result in permanent visual impairment and blindness. Consultation with an optometrist trained in vision rehabilitation is advisable to enhance patient’s residual vision and QoL. The rehabilitation significantly improves vision-related QoL in patients with glaucoma.

Vision rehabilitation includes the use of optical and non-optical devices, and referral to other services (vocational, occupational and independent living) and psychosocial counselling. Multidisciplinary approach improves scores of overall visual ability of visually-impaired patients including those with glaucoma at 30 days follow-up (p<0.001).

- All patients with low vision and blindness should be registered with Social Welfare Department to be eligible for financial and social benefits.

Recommendation 7
- Glaucoma patients with blindness or low vision should be referred for vision rehabilitation which includes vocational, occupational and independent living.

Refer to Appendix 10 on Categories of severity of visual impairment.
9. **REFERRAL**

The aim of referral is to ensure that the patients receive specialised and optimised care under glaucoma-trained healthcare providers. This chapter is written based on expert opinion of the CPG DG and evidence in other chapters in the guidelines.

- Indications for referral are as follows:
 - acute angle closure (immediate referral)
 - confirmation of diagnosis
 - progression of disease
 - issues related to medical treatment:
 - side effects
 - requirement of ≥2 medications
 - poor compliance or adherence
 - uncontrolled IOP despite maximum medical treatment requiring laser or surgical intervention
10. SPECIAL CONDITIONS

10.1 Ocular Hypertension

Clinical features of OHT are:
- untreated IOP >21 mmHg
- open anterior chamber angle
- normal OD and RNFL
- normal VF
- no clinical evidence of secondary causes of elevated IOP

Important diagnostic testing includes:
- measurement of IOP
- gonioscopy
- measurement of CCT
 - It is an essential part of ocular examination in the workup of OHT patients.
 - It aids in interpretation of IOP readings and stratification of patient risk for developing POAG.
 - In OHT patients, the average CCT is 570 μm. Eyes with CCT <555 μm are at greater risk of developing POAG compared to eyes with CCT of ≥588 μm.97, level II-2
 - GAT may overestimate the actual IOP in eyes with thicker CCT and underestimate in eyes with thinner CCT.98 - 99, level III
 - IOP measurement should not be corrected as there is no generally accepted correction formula for it.
- OD and RNFL assessment and/or imaging
 - OD and RNFL should be assessed and secondary causes of any abnormalities should be excluded. Stereoscopic disc photographs are advocated as baseline documentation. Computerised digital imaging of the OD and RNFL can be used to provide quantitative information and to facilitate in monitoring of patients.41, level I
- VF test for initial evaluation and as baseline for future monitoring of progression

Management of OHT consists of:
- monitoring for changes suggestive of glaucomatous damage in the OD, RNFL and VF
- evaluating and identifying patients at risk of POAG conversion in order to initiate treatment

The likelihood of patients with OHT developing POAG increases with the number and severity of risk factors. Some of the predictive factors for conversion to POAG in both Ocular Hypertension Treatment Study (OHTS) and European Glaucoma Prevention Study (EGPS) trials
are: 19, level II-2; 97, level II-2

- older age
- higher IOP
- thinner CCT
- larger CDR
- higher Humphrey VF PSD

A risk calculator using the above predictive factors as parameters can determine the overall risk of developing POAG in five years, 18, level II-2

It is available for free online from http://ohts.wustl.edu/risk. Based on OHTS data, low glaucoma 5-year risk was defined arbitrarily as <6%, moderate as 6 - 13% and high >13%. 100, level I

In OHTS, medical treatment of OHT was effective in delaying or preventing the onset of POAG. Lowering of IOP by 20% reduced risk for progression by 50% over five years duration. However, 90 - 95% of the patients did not progress to POAG and thus not all require treatment. 100 - 101, level I

Based from the OHTS data, treatment of patients with IOP ≥24 mmHg and ≥2% annual risk of development of POAG is likely to be cost-effective. 102, level I

The decision to treat OHT will need to be individualised based on:

- clinical findings
- risk assessment
- life expectancy
- patient’s preferences
- treatment cost, risks and benefits

Monitoring schedule of OHT should be based on the risk of conversion to POAG. 87 In OHTS, a reduction of 20% from the mean baseline IOP was used as the target IOP. 101, level I

In EGPS, dorzolamide alone was not effective in preventing the onset of POAG at five years follow-up compared to placebo. 103, level I

It has been suggested to begin by choosing a target pressure of 20% lower than the mean baseline IOP. 92 The first choice of treatment is usually topical medication. Laser trabeculoplasty may be considered if there is drug intolerability, poor compliance or cost issues.

Refer Appendix 11 on OHT Pathway (OHT and POAG suspects with high IOP).

OHT patients need to be monitored long-term for the development of POAG regardless whether they are being treated or not. When there is evidence of changes suggestive of glaucomatous damage that is consistent with POAG (e.g. ONH appearance, RNFL or VF), then patients should be managed as POAG cases.
There is no evidence from studies on how OHT patients should be monitored and put on follow-up schedules. In OHTS, the first feature suggestive of POAG was either change in OD and/or VF.104, level I Thus, both structural and functional assessments are essential when monitoring OHT patients. Computer-based imaging of the ONH and RNFL is a useful adjunct to clinical examination as it provides quantitative information and may aid in documenting progression.41, level I Therefore, clinical examination and imaging of the ONH and RNFL, with assessment of the VF is commonly needed to facilitate the evaluation of progressive glaucomatous damage.

\begin{center}
\textbf{Recommendation 8}
\end{center}

- Ocular hypertension (OHT) patients should have comprehensive initial eye examination and assessment of risk factors for conversion to primary open angle glaucoma (POAG).
 - Central corneal thickness measurement should be performed.
- Treatment of OHT should be based on the risk of conversion to POAG*.

*Risk calculator can be used.

\textbf{10.2 Primary Open Angle Glaucoma Suspect}

POAG suspect is defined as an individual with clinical findings and/or risk factors that increase the likelihood of developing POAG.105 The clinical findings include any of the following features:87

- any IOP level
- suspicious glaucomatous appearance of OD (refer to \textbf{Subchapter 4.2.6})
- normal or suspicious glaucomatous VF defects (refer to \textbf{Subchapter 4.3.1})

Management of POAG suspect consists of:

- monitoring for changes suggestive of glaucomatous damage in the OD, RNFL and VF
- evaluating and identifying patients at risk of POAG conversion in order to initiate treatment

An individual with normal IOP, and changes in optic nerve and VF consistent with glaucomatous damage, should be diagnosed as having Normal Tension Glaucoma (NTG). It should be treated and monitored similar to POAG.87

Conversion of glaucoma suspect to NTG is poorly understood. Non-IOP dependent factors, especially vascular dysregulation, are thought to play a relatively larger role.106, level III
Risk factors of NTG are:

a. ocular
 - disc haemorrhages (HR=2.72, 95% CI 1.39 to 5.32)107, level II-2
 - wide diurnal IOP fluctuation108, level III; 109, level II-2
 - presence of beta zone within peripapillary atrophy110, level III

b. systemic
 - OSA Syndrome26, level III
 - Raynaud’s phenomenon88
 - migraine88; 107, level II-2
 - low blood pressure93, level III
 - nocturnal hypotension93, level III
 - low ocular perfusion pressure111, level II-2
 - low intracranial and cerebrospinal fluid (CSF) pressure112, level III

Monitoring of POAG suspect may be done at intervals of:87
 - 1 to 2 years if there is low risk of conversion*
 - 6 months to 1 year if there is high risk of conversion*

*Risk of conversion is clinically assessed based on age, IOP, CCT, and changes in ONH and VF.

If there is no change in the parameters after 3 - 5 years, the patient can be transferred from active glaucoma care to general ophthalmologist or community optometrist.87

Refer to Appendix 12 on POAG Suspects with Normal IOP Pathway.

Recommendation 9
- Comprehensive eye examination and risk assessment should be performed in primary open angle glaucoma suspect. Diurnal intraocular pressure fluctuation should be considered in the assessment.

10.3 Steroid-Induced Glaucoma

Steroid use may give rise to secondary OHT which may infrequently lead to steroid-induced glaucoma. It can occur as a result of topical, systemic or intravitreal administration of steroids. However in clinical practice, most can be controlled by topical glaucoma medications but a small proportion requires surgery.113, level I; 114, level II-2 In a small study of 34 patients, glaucoma medications were discontinued in all patients by 18 months after cessation of steroid therapy.114, level II-2

10.4 Neovascular Glaucoma

Neovascular glaucoma (NVG) is a severe form of secondary glaucoma in which the eye develops progressive neovascularisation of the iris and angle. It is induced by ocular microvascular disease with retinal
ischaemia. Initially fibrovascular membrane covers the angle, causing secondary open angle glaucoma. This can progress to angle closure glaucoma. The common conditions associated with NVG are proliferative diabetic retinopathy, central retinal vein occlusion and other conditions such as ocular ischaemic syndrome and tumours.

Management of NVG involves optimising treatment of the underlying disease and control of high IOP. The treatment for NVG includes:15

- **medical treatment**
 - topical and systemic IOP lowering medication (refer to Subchapter on Medical Treatment)
 - topical steroid
 - topical atropine

- **laser/surgery**
 - retinal ablation with laser or cryotherapy
 - filtering surgery with antimetabolites
 - GDD
 - cyclodestructive procedure
 - intravitreal or intracameral anti-vascular endothelial growth factor (anti-VEGF)

NVG is a difficult condition to manage and medical treatment usually fails to control the IOP. Surgical treatment provides better IOP control.

Trabeculectomy with MMC efficaciously reduces the elevated IOP in NVG. The extent of PAS and a history of vitrectomy are significant negative predictors of IOP reduction.115, level II-1 Both Ahmed valve implant and Molteno single plate implant significantly reduce IOP in patients with NVG up to six months.116, level III There is no significant difference in the IOP lowering between TSCP and Ahmed implant in refractory NVG treatment. However, TSCP is less time consuming and easier to perform.117, level I Rates of TSCP complications are higher in NVG and with treatment protocols using more than 80 Joule per session.64, level III

Anti-VEGF may have a role in the treatment of NVG.

- There is no significant difference in regression of neovascularisation of iris and reduction of IOP between 1.25 mg and 2.5 mg intracameral bevacizumab followed by trabeculectomy at six months follow-up.118, level I

- Intravitreal bevacizumab with PRP followed by Ahmed valve implantation is significantly efficacious in controlling IOP at 18 months119, level I and causing complete regression of rubeosis iridis in NVG at 24 months.120, level I

- However, intravitreal ranibizumab (0.5 mg) injection before surgery has no significant effect on IOP, BCVA, anti-glaucoma medications or post-operative complications in NVG treated with Ahmed glaucoma valve implantation up to 12 months.121, level II-1
There is insufficient evidence to recommend a preferred method of treatment for NVG. The treatment options need to be individualised.

The key to prevent NVG is to optimise management of the underlying diseases.

10.5 Intraocular Pressure Monitoring in Post-Refractive Surgery Cases

Corneal laser refractive surgery is a popular method for correction of refractive errors. However, refractive surgery is relatively contraindicated in patients with glaucoma because of its potential problems. These include acute transient IOP elevation and damage to existing filtering blebs during corneal flap construction, steroid-induced IOP elevation and pressure-induced intra-lamellar stromal keratitis, and inaccuracy of post-operative IOP measurement which may influence the management of glaucoma.

Most IOP measuring devices are reliant on corneal biomechanics and thickness. Different corneal thickness and tissue properties have varying effects of IOP measurement by different IOP measuring devices. In post-refractive surgery, there is an underestimation of IOP by most of the devices because of thinner CCT. GAT is significantly influenced by CCT compared with Pascal dynamic contour tonometry and tonopen.98 - 99, level III; 122 - 123, level II-3

Proper and accurate establishment, and documentation of baseline parameters (e.g. VF, IOP, CCT and OD image) prior to refractive surgery is essential in providing optimal monitoring for development and progression of glaucoma in future.

In post-refractive surgery, there is an underestimation of IOP by most devices.

Documentation of baseline parameters prior to refractive surgery is essential.
11. IMPLEMENTING THE GUIDELINES

The management of glaucoma should be guided by evidence-based approach in order to provide quality care to the patients. Several factors may affect the implementation of recommendations in the CPG.

11.1 Facilitating and Limiting Factors

Existing facilitators for application of the recommendations in the CPG include:
- wide dissemination of the CPG (soft- and hard-copies) to healthcare providers
- regular update on glaucoma management at conferences and scientific meeting locally
- public awareness during World Glaucoma Week

Existing barriers for application of the recommendations of the CPG are:
- limited knowledge and evolving understanding of glaucoma
- insufficient resources for integrated care at different level of service delivery
- variation in treatment practice and preferences
- no national glaucoma registry for further planning of services
- lack of awareness, poor access to eye care services and different cultural/religious beliefs among the patients

11.2 Potential Resource Implications

To implement the CPG, there must be strong commitment to:
- ensure widespread distribution of the CPG to healthcare providers via printed and electronic copies
- reinforce regular training with adequate funding of healthcare providers
- ensure trained multidisciplinary team is available at different levels of healthcare
- ensure widespread distribution of updated patient education materials
The following is proposed as \textbf{clinical audit indicator for quality management}:

Percentage of newly-diagnosed glaucoma patients treated with prostaglandin analogue as first-line treatment

\[
= \frac{\text{Number of newly-diagnosed glaucoma patients treated with prostaglandin analogue as first-line treatment in a period}}{\text{Number of newly-diagnosed glaucoma patients on medical treatment in the same period}} \times 100\%
\]

Implementation strategies will be developed following the approval of the CPG by MOH which include launching of the CPG, Quick Reference and Training Module.
REFERENCES

62. Barnebey HS, Robin AL. Adherence to Fixed-Combination Versus Unfixed Travoprost 0.004%/Timolol 0.5% for Glaucoma or Ocular Hypertension: a Randomized Trial. Am J Ophthalmol. 2016;pii:S0002-9394(16)30598-0.

APPENDIX 1

EXAMPLE OF SEARCH STRATEGY

The following Medical Subject Heading terms or free text terms were used either singly or in combination, search was limit to English, human and last 10 years:-

Clinical Question: What are the risk factors for primary glaucoma (open angle and angle closure glaucoma)?

1. glaucoma/
2. glaucoma*.tw.
3. glaucoma, angle-closure/
4. glaucoma* adj1 (narrow angle or narrow-angle or closed angle or closed-angle or angle closure or angle-closure).tw.
5. glaucoma, open-angle/
6. glaucoma* adj1 (simpl* or open angle or open-angle).tw.
7. low tension glaucoma/
8. glaucoma* adj1 (low tension or normal tension).tw.
9. tension adj1 (glaucoma* low or glaucoma* normal).tw.
10. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9
11. risk factors/
12. Risk adj1 factor*.tw.
13. 11 or 12
14. 10 and 13
15. limit 14 to ("all adult (19 plus years)" and english and humans and last 10 years)
APPENDIX 2

CLINICAL QUESTIONS

1. What are the risk factors for primary glaucoma (open angle and angle closure glaucoma)?
2. Who to be screened for glaucoma?
 What are the effective and safe screening tools/methods for glaucoma?
3. What are the criteria for glaucoma diagnosis?
4. What are the principles of treatment for glaucoma?
5. What are the effective and safe pharmacological treatments in glaucoma?
6. Is laser treatment effective and safe in primary open angle glaucoma?
7. What are the effective and safe surgical treatments in glaucoma?
8. What is the effective and safe follow-up schedule in glaucoma?
9. What is the effective method of monitoring patient’s compliance and adherence in glaucoma?
10. What is the effective method of monitoring progression in glaucoma?
11. What are the effective and safe rehabilitation measures in glaucoma?
12. What are the safe and effective treatments in ocular hypertension?
13. How to diagnose and follow-up glaucoma suspect (optic disc abnormalities)?
14. What are the effective and safe treatments in patients with steroid-induced glaucoma?
15. What are the effective and safe treatments in neovascular glaucoma?
16. What are the effective and safe methods of intra-ocular pressure measuring in post-refractive surgery in glaucoma?
APPENDIX 3

VAN HERICK TEST

- A narrow slit of light is projected onto the peripheral cornea at an angle of 60° as near as possible to the limbus.
- This results in a slit image on the surface of the cornea, the width of which is used as reference for the assessment of the conditions in the chamber angle [limbal corneal thickness (LCT)].
- The peripheral anterior chamber depth (PACD) can be described by the distance between the corneal slit image and the slit image on the iris.

<table>
<thead>
<tr>
<th>Van Herick Grade</th>
<th>Ratio of PACD to LCT</th>
<th>Schematic diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 0</td>
<td>Closed angle closure</td>
<td></td>
</tr>
<tr>
<td>Grade 1</td>
<td><1:4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angle closure likely</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angle approx. 10°</td>
<td></td>
</tr>
<tr>
<td>Grade 2</td>
<td>1:4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angle closure possible</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angle approx. 20°</td>
<td></td>
</tr>
<tr>
<td>Grade 3</td>
<td>1:2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angle closure unlikely</td>
<td></td>
</tr>
<tr>
<td>Grade 4</td>
<td>1:1 (or > 1.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angle closure very unlikely</td>
<td></td>
</tr>
</tbody>
</table>

APPENDIX 4

INDENTATION/DYNAMIC GONIOSCOPY

Technique
1. Explain the procedure to patient.
2. Instill topical anaesthesia.
3. Darken the room.
4. Set the slit lamp magnification to 10 - 25x, a fairly short (2 - 3 mm) slit and narrow light beam. The light beam should not pass through the pupil as this may cause pupil constriction.
5. Use a goniolens with a smaller posterior diameter than the corneal diameter (such as Sussman, or Zeiss 4-mirror goniolens). A coupling agent is not required.
7. In indentation gonioscopy, gentle pressure is placed on the cornea to force the aqueous humour into the anterior chamber angle. This causes posterior bowing of the iris which enables further assessment of the angle.
8. Too much pressure on the cornea may distort the anterior chamber angle and may give the observer the false impression of an open angle. This happens when the examiner notices the presence of Descemet membrane folds.
9. Examine each quadrant of the angle and record accordingly.

Refer to www.gonioscopy.org for further details.
ESTIMATION OF OPTIC DISC SIZE

- OD size influences the estimation of CDR.
- A normal patient with a small disc will have a small cup, thus a smaller CDR. A normal patient with a large disc tend to have a large cup, thus a larger CDR.
- OD size can be estimated using a handheld convex lens and a slit lamp (using the adjustable beam height).
- A small beam is adjusted to the vertical diameter of the OD and its length is read on the scale of the slit lamp. It is most accurate in a diated pupil.
- Based on the lens used, this value needs to be corrected using the magnification factor depending on lens power.

<table>
<thead>
<tr>
<th>Lens used</th>
<th>Correction factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>+60D Volk</td>
<td>1.0</td>
</tr>
<tr>
<td>+78D Volk</td>
<td>1.13</td>
</tr>
<tr>
<td>Superfield Volk</td>
<td>1.50</td>
</tr>
</tbody>
</table>

- A normal disc size is approximately 1.5 mm. A disc is considered small if it is ≤ 1.2 mm and large if it is ≥1.8
Right eye OD showing typical glaucomatous optic disc changes:
- ISNT rule not obeyed (inferior NRR thickness is the same as superior NRR)
- large vertical CDR 0.8 (ratio of black to yellow arrow)
- peripapilllary OD haemorrhage and loss of RNFL (white arrow in picture A)
- focal neuro-retinal rim thinning/notching (white arrow picture B)

A normal OD photograph showing the thickness of neuro-retinal rim following the ISNT rule.

- The ISNT rule is useful in evaluating whether thinning is physiological or pathological.
- A healthy disc tends to have its thickest portion of NRR inferiorly, follows by superiorly and nasally, with the thinnest portion temporally. NRR thickness as shown in yellow bar follows ISNT rule.

MANAGEMENT ACUTE ANGLE CLOSURE

Patient with AAC

Medical therapy to break attack and prepare patient for LPI

View clear

NO

Compression or ALPI to clear the view

YES

Evidence for secondary cause of AAC crisis

Treat pathology of secondary AAC and lower IOP medically or surgically

Surgical iridectomy or cataract surgery ± goniosynechialysis or trabeculectomy

Definite evidence for PAC mechanism of AAC

Unsuccessful or not possible

ALPI

Unsuccessful or not possible

Prompt LPI

Schedule iridotomy in fellow eye if chamber angle is anatomically similar

Patent iridotomy

IOP controlled

Follow-up with dark room gonioscopy to assess adequacy of angle opening

• Dark room gonioscopy to assess other mechanism of angle closure
• Ascertain continued patency of the iridotomy
• Further medical and surgical treatment to lower IOP

IOP uncontrolled

AAC = acute angle closure
LPI = laser peripheral iridotomy
ALPI = argon laser peripheral iridoplasty
PAC = primary angle closure
IOP = intraocular pressure

APPENDIX 7

PROPER INSTILLATION TECHNIQUE OF EYE DROP

It is important to:
• Wash hands before and after putting the eye drop.
• Apply the eye drop as directed by the doctor.

Instillation technique
1. Tilt the head back and look up.
2. Pull down the lower eyelid to form a pocket.
3. Hold the bottle vertically and bring it above the eye. Do not let the bottle tip touch the eye.
4. Squeeze one drop into the pocket of the lower eyelid.
5. If you’re not sure a drop has entered the eye, instil a second drop.

6. Close the eye gently. Do not blink or squeeze the eyelid. Apply a gentle pressure on the lacrimal duct at a nasal corner of the eye with the index finger for two to three minutes.

7. If using more than one eye drops, wait at least five minutes before instilling the next eye drop.
MAIN FEATURES OF TOPICAL ANTI-GLAUCOMA MEDICATIONS

<table>
<thead>
<tr>
<th>Features</th>
<th>Prostaglandin analogues/prostamides</th>
<th>β-blockers</th>
<th>α₂ Adrenergic agonists</th>
<th>Topical CAIs</th>
<th>Cholinergic agents (direct-acting)</th>
</tr>
</thead>
</table>
| Mechanism of action | Increase in uveoscleral outflow | Reduction of aqueous production | • Reduction of aqueous production
• Increase in uveoscleral outflow | Reduction of aqueous production | Increase in trabecular outflow |
| IOP reduction efficacy | +++
25 - 30%
(better control of circadian IOP) | +++
20 - 25% | ++ to +++
20 - 25% | + to ++
15 - 20% | + to ++
20 - 25% |
| Duration of effect | 24 hours | 12 hours | 12 hours | 8 - 12 hours | 6 - 12 hours |
| Treatment option | First or second choice
(switching within this class maybe of benefit as patient may respond differently) | First or second choice | Second choice
(α2-selective agents maybe used as short term primary therapy following anterior segment procedures for preventing acute spike in IOP) | Second choice | Third choice |
Features
- **Prostaglandin analogues/prostamides**
- **β-blockers**
- **α₂ Adrenergic agonists**
- **Topical CAIs**
- **Cholinergic agents**
 - (direct-acting)

Instillation frequency
- Once daily (except unoprostone twice daily)
- Paradoxical effect (↑ IOP) may occur if more than once daily dosing
- More effective if administered in the evening

Commercially available preparation
- Latanoprost 0.005%*
- Travoprost 0.004%*
- Bimatoprost 0.03%, 0.01%*
- Tafluprost 0.0015%*
- Unoprostone 0.12%, 0.15%

Non-selective
- Timolol 0.25%, 0.5%*
- Levobunolol 0.25%, 0.5%*
- Betaxolol 0.25%, 0.5%*
- Metipranolol 0.1%, 0.3%
- Pindolol 0.5%

α₂-selective
- Brimonidine 0.15%*
- Apraclonidine 0.5%, 1%
- Clonidine 0.15%, 0.5%

Non-selective
- Dipivefrin 0.1%, 0.5%
- Epinephrine 0.25%, 0.5%

Topical CAIs
- Brinzolamide 1%
- Dorzolamide 2%

Direct-acting cholinergic agents
- Pilocarpine 1%, 2%, 4%
- Acetylcholine 1%
- Demecarium bromide 0.125% - 0.25%
- Ecothiophate iodide 0.03% - 0.25%
- Phystostigmine

Drug combinations - addictive effect

<table>
<thead>
<tr>
<th>Prostaglandin analogues/prostamides</th>
<th>β-blockers</th>
<th>α₂ Adrenergic agonists</th>
<th>Topical CAIs</th>
<th>Cholinergic agents (direct-acting)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>Beta-blockers</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Adrenergic agonists</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topical CAIs</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cholinergic agents (direct-acting)</td>
<td>±</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Features</td>
<td>Prostaglandin analogues/prostamides</td>
<td>β-blockers</td>
<td>α₂ Adrenergic agonists</td>
<td>Topical CAIs</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------------</td>
<td>-----------------------------------</td>
<td>------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Non-preservatives or with different preservative preparations</td>
<td>No</td>
<td>Yes*</td>
<td>Yes*</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(both preparations available)</td>
<td>(preparation with different preservative available)</td>
<td></td>
</tr>
<tr>
<td>Fixed combination preparations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes*</td>
<td>Brimonidine 0.2% & brinzolamide 1% eye drops</td>
<td>Yes*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Travoprost 0.004% & timolol 0.5% eye drops*</td>
<td>Brimonidine 0.2% & brinzolamide 1% eye drops</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bimatoprost 0.03% & timolol 0.5% eye drops*</td>
<td>Brimonidine 0.2% & brinzolamide 1% eye drops</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Latanoprost 0.005% & timolol maleate 0.5% eye drops*</td>
<td>Brimonidine 0.2% & brinzolamide 1% eye drops</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tafluprost 0.0015% & timolol 0.5% eye drops*</td>
<td>Brimonidine 0.2% & brinzolamide 1% eye drops</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Dorzolamide 2% & timolol 0.5% eye drops*</td>
<td>Brimonidine 0.2% & brinzolamide 1% eye drops</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Brimonidine 0.2% & timolol 0.5% eye drops*</td>
<td>Brimonidine 0.2% & brinzolamide 1% eye drops</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Brinzolamide 1% & timolol 0.5% eye drops*</td>
<td>Brimonidine 0.2% & brinzolamide 1% eye drops</td>
<td></td>
</tr>
</tbody>
</table>

*Drugs available in Malaysia

The information on various anti-glaucoma medications on this section only serves as a general guide and is not all inclusive.

Source:
- Individual product information sheet
<table>
<thead>
<tr>
<th>Safety Profiles</th>
<th>Prostaglandin analogues/prostamides</th>
<th>β-blockers</th>
<th>α₂ Adrenergic agonists</th>
<th>Topical CAIs</th>
<th>Cholinergic agents (direct-acting)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contraindications</td>
<td>Relative contraindications:</td>
<td>• Bronchial asthma, chronic obstructive pulmonary disease</td>
<td>• On monoamine oxidase inhibitor therapy</td>
<td>• Compromised corneal endothelium</td>
<td>• Uveitic, neovascular and lens induced glaucoma</td>
</tr>
<tr>
<td></td>
<td>• uveitis</td>
<td>• Bradycardia, heart block, cardiac failure</td>
<td>• Children <2 years old due to possibility of central nervous system suppression</td>
<td>• Sulfonamide allergy</td>
<td>• Aqueous misdirection syndrome</td>
</tr>
<tr>
<td></td>
<td>• Herpes Simplex Viral keratitis</td>
<td>Relative contraindication for β1 selective</td>
<td>• Severe renal impairment</td>
<td>• Caution Hepatic impairment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• cystoid macular oedema</td>
<td>Caution in: complicated intraocular surgery (e.g. posterior capsule rupture)</td>
<td>• Caution Hepatic impairment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caution in: complicated intraocular</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>surgery (e.g. posterior capsule</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rupture)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pregnancy and nursing</td>
<td>Human studies are lacking. Use only if potential benefit outweighs the potential risk to foetus/infant.</td>
<td>Human studies are lacking. Use only if potential benefit outweighs the potential risk to foetus/infant.</td>
<td>Human studies are lacking. Use only if potential benefit outweighs the potential risk to foetus/infant.</td>
<td>Human studies are lacking. Use only if potential benefit outweighs the potential risk to foetus/infant.</td>
<td>Human studies are lacking. Use only if potential benefit outweighs the potential risk to foetus/infant.</td>
</tr>
<tr>
<td>mothers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common drug interactions</td>
<td>Chronic pilocarpine use may reduce the efficacy of these agents</td>
<td>Systemic beta-blockers Calcium antagonists Digitalis Catecholamine-depleting drugs</td>
<td>Central nervous system depressants (alcohol, barbiturates, opiates, sedatives, anaesthetics), tricyclic antidepressants</td>
<td>Caution in patients on steroid (potential for hypokalaemia)</td>
<td>Competitive interaction on outflow with prostaglandin</td>
</tr>
<tr>
<td>Topical allergies</td>
<td>±</td>
<td>±</td>
<td>++</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td>Safety Profiles</td>
<td>Prostaglandin analogues/prostamides</td>
<td>β-blockers</td>
<td>α₂ Adrenergic agonists</td>
<td>Topical CAIs</td>
<td>Cholinergic agents (direct-acting)</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------------------------</td>
<td>------------</td>
<td>------------------------</td>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Ocular adverse effects</td>
<td>Ocular discomfort (stinging, burning, foreign body sensation) Pruritis Photophobia Tearing Dry eye Blurred vision Asthenopia Allergy (conjunctivitis, eyelid erythema) Conjunctival hyperaemia (usually transient and non-infectious) Subconjunctival haemorrhage Hypertrichosis Blepharitis Eyelid skin darkening Corneal oedema Punctate epithelial keratopathy Reactivation of Herpes Simplex Virus keratitis Iris darkening Cataract Anterior uveitis Cystoid macula oedema</td>
<td>Ocular discomfort (stinging, burning, foreign body sensation) Pruritis Photophobia Tearing Conjunctival hyperaemia Decreased corneal sensitivity Punctate epithelial keratopathy Allergy (conjunctivitis, eyelid erythema)</td>
<td>Ocular discomfort (stinging, burning, foreign body sensation) Pruritis Allergy (conjunctivitis, eyelid erythema) Conjunctival hyperaemia Subconjunctival haemorrhage Lid retraction Pupil dilatation (apracaclidine)</td>
<td>(Brinzolamide 1% causes less ocular discomfort) Ocular discomfort (stinging, burning, foreign body sensation) Pruritis Allergy (conjunctivitis, eyelid erythema) Conjunctival hyperaemia</td>
<td>Brow ache Lacrimation Miosis Dimness of vision Blurring of vision, myopic shift Ciliary spasm Aggravate pupillary block Retinal detachment</td>
</tr>
<tr>
<td>Safety Profiles</td>
<td>Prostaglandin analogues/prostamides</td>
<td>β-blockers</td>
<td>α₂ Adrenergic agonists</td>
<td>Topical CAIs</td>
<td>Cholinergic agents (direct-acting)</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Systemic adverse effects</td>
<td>0</td>
<td>+ to +++</td>
<td>+ to +</td>
<td>0 to ++</td>
<td>0 to ++</td>
</tr>
<tr>
<td></td>
<td>(Selective β-blockers has a wider safety margin - less systemic side effects especially cardiopulmonary side-effects)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiovascular adverse effects</td>
<td>-</td>
<td>Bradyarrhythmias</td>
<td>-</td>
<td>-</td>
<td>Arrhythmia Flushing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypotension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cardiac failure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nocturnal hypotension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory adverse effects</td>
<td>-</td>
<td>Bronchospasm</td>
<td>-</td>
<td>-</td>
<td>Bronchoconstriction</td>
</tr>
<tr>
<td>Neurology adverse effects</td>
<td>-</td>
<td>Syncope</td>
<td>Apnoea in infants</td>
<td>Dizziness</td>
<td>Headache</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drowsiness</td>
<td>Syncope</td>
<td>Headache</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anergy</td>
<td>Drowsiness</td>
<td>Asthenia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fatigue</td>
<td>Headache</td>
<td>Fatigue</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depression</td>
<td>Asthenia</td>
<td>Depression</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aggravation of myasthenia gravis</td>
<td>Memory impairment</td>
<td>Paresthesia</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal tract (GIT) adverse effects</td>
<td>-</td>
<td>GIT discomfort</td>
<td>GIT discomfort</td>
<td>Throat irritation</td>
<td>Salivation Abdominal cramps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral dryness</td>
<td>Oral dryness</td>
<td>Altered taste</td>
<td>Diarrhoea Vomiting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety Profiles</td>
<td>Prostaglandin analogues/prostamides</td>
<td>β-blockers</td>
<td>α₂ Adrenergic agonists</td>
<td>Topical CAIs</td>
<td>Cholinergic agents (direct-acting)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------------------</td>
<td>--</td>
<td>------------------------</td>
<td>--------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Other adverse effects</td>
<td>-</td>
<td>Masked hypoglycaemia</td>
<td>-</td>
<td>Urolithiasis</td>
<td>Urinary frequency</td>
</tr>
</tbody>
</table>

The information on various anti-glaucoma medications on this section only serves as a general guide and is not all inclusive.

Source:
- Individual product leaflet
Antimetabolites usage should be individualised to each patient depending on the complexity of cases.

Care in the preparation and disposal of metabolites:
- It is recommended to prepare metabolite in a separate trolley using aseptic technique.
- The instruments used in MMC or 5-FU application should not be re-used during the surgery to avoid contamination of the surgical field.
- The soaked sponges must be disposed in an incinerator or safely in concordance with bio-waste rules.
- Disposal of leftover/unused antimetabolites should be taken with the same care as any other chemotherapies. It should be sent back to local pharmacy department for proper disposal.

Modified: South East Asia Glaucoma Interest Group. Asia Pacific Glaucoma Guidelines Second Edition. Hong Kong: Scientific Communication International; 2008

Application of Mitomycin C (MMC) or 5-Fluorouracil (5-FU) in Trabeculectomy

<table>
<thead>
<tr>
<th>Antimetabolite</th>
<th>Timing of application</th>
<th>Dose and duration</th>
<th>Mode of application</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMC**</td>
<td>During surgery/intra-operatively</td>
<td>0.2 - 0.4 mg/ml applied for 1 - 5 minutes</td>
<td>Subconjunctival local application</td>
</tr>
<tr>
<td></td>
<td>Post-operatively/prior to needling</td>
<td>0.01 ml of MMC (0.4 mg/ml) and 0.02 ml of bupivacaine with epinephrine</td>
<td>Subconjunctival injection</td>
</tr>
<tr>
<td>5-FU**</td>
<td>During surgery/ intra-operatively</td>
<td>50 mg/ml for 1 - 3 minutes</td>
<td>Subconjunctival local application</td>
</tr>
<tr>
<td>(comes in 50mg/ml solution in 5 ml vial and is used without dilution)</td>
<td>Post-operatively/prior to needling</td>
<td>5 mg/0.1ml for up to 4 post-operative weeks</td>
<td>Subconjunctival injection</td>
</tr>
</tbody>
</table>

* MMC: Mitomycin C
* 5-FU: 5-Fluorouracil
APPENDIX 9

LASER IRIDOTOMY

Pre-Laser Management

i. Get informed consent.
ii. Instil pilocarpine 2%.
iii. Consider brimonidine 0.15 - 0.2%, and/or β-blocker, and/or oral CAI, and/or steroid eye drops before the procedure to reduce post-treatment IOP spike/inflammation.
iv. Instil topical anaesthesia.
v. Use iridotomy lenses e.g. Abraham (+66 diopters) or equivalent.
vi. Choose superior quadrants of the iris which is well covered by the upper eyelid, in a thin looking area or an iris crypt and placed as peripheral as possible.

Laser Setting for 'Sequential' Laser - Argon followed by Nd: Yag Laser

- Preparatory burns - Argon laser
 - Spot size: 200 - 500 μm
 - Exposure time: 0.2 - 0.5 sec
 - Power: 200 - 600 mW (depends on iris pigmentation; lower power for darker irides to avoid charring)

- Penetrating burns - Argon laser (chipping technique)
 - Spot size: 50 μm
 - Exposure time: 0.05 - 0.1 sec
 - Power: 600 - 1,000 mW (modify parameters depending on individual’s response)
 - End point: presence of gush of aqueous and pigments

- Penetration laser burns - Nd:YAG laser
 - Power: 3 - 8 mJ
 - Number of shots: Usually 2 - 5 shots
 - Adequate iridotomy size: 200 - 500 μm

CATEGORIES OF SEVERITY OF VISUAL IMPAIRMENT

<table>
<thead>
<tr>
<th>Category of visual impairment</th>
<th>Snellen VA with best possible correction</th>
<th>Or central VF*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum less than</td>
<td>Minimum equal to or better than</td>
</tr>
<tr>
<td></td>
<td>6/18</td>
<td>6/60</td>
</tr>
<tr>
<td>1 Moderate visual impairment</td>
<td>6/60</td>
<td>3/60</td>
</tr>
<tr>
<td>2 Severe visual impairment</td>
<td>6/60</td>
<td>20° or less but more than 10°</td>
</tr>
<tr>
<td>3 Blindness</td>
<td>3/60 (counting finger at 1 meter)</td>
<td>10° or less but more than 5°</td>
</tr>
<tr>
<td>4 Blindness</td>
<td>1/60 (counting finger at 1 meter)</td>
<td>Light Perception</td>
</tr>
<tr>
<td>5 Blindness</td>
<td>No Light Perception</td>
<td></td>
</tr>
</tbody>
</table>

*VF restriction criteria is applicable even if VA is better than for that category of visual impairment.

APPENDIX 11

OCULAR HYPERTENSION PATHWAY (OHT AND POAG SUSPECTS WITH HIGH IOP)

<table>
<thead>
<tr>
<th>CCT</th>
<th>Untreated IOP</th>
<th>Age</th>
<th>555 - 590 µm</th>
<th><555 µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>>590 µm</td>
<td>>21 - 25 mmHg</td>
<td>>25 - 32 mmHg</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>555 - 590 µm</td>
<td>>21 - 25 mmHg</td>
<td>>25 - 32 mmHg</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td><555 µm</td>
<td>>21 - 25 mmHg</td>
<td>>25 - 32 mmHg</td>
<td>Treat until 60 years</td>
<td>Treat until 65 years</td>
</tr>
<tr>
<td>Any</td>
<td>>21 - 25 mmHg</td>
<td>>25 - 32 mmHg</td>
<td>Treat until 80 years</td>
<td>Treat until 80 years</td>
</tr>
<tr>
<td>>32 mmHg</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
</tr>
</tbody>
</table>

- **Monitoring**
 - IOP, ONH & VF
 - Low risk of conversion to POAG: 12 - 24 m
 - High risk of conversion to POAG: 6 - 12 m

- **Initial monitoring**
 - IOP only: 1 - 4 m
 - IOP, ONH & VF: Low risk of conversion: 6 - 12 m
 - High risk of conversion: 4 - 6 m

- **Ongoing monitoring**
 - IOP only: 1 - 4 m
 - IOP, ONH & VF: Low risk of conversion: 6 - 12 m
 - High risk of conversion: 4 - 6 m

- **Changes**
 - Yes: Assess monitoring results
 - No: No change in treatment plan

- **Discharge**
 - After 3 - 5 years if no change and advise annual follow-up with general ophthalmologist or primary care optometrist

- **Evidence of optic nerve damage and/or VF changes**
 - IOP at target: No change in treatment plan
 - IOP not on target: Change or start pharmacological treatment or review target IOP

- **Treated patients with age > threshold**
 - Monitor untreated IOP only after 1 - 4 m
 - If IOP cannot be controlled medically, refer to consultant ophthalmologist

- **No change in treatment plan**
 - Offer no treatment

- **PGA**
 - Prostaglandin analogues

- **OAG**
 - Open angle glaucoma

- **m**
 - Months

Modified: National Collaborating Centre for Acute Care. Glaucoma: Diagnosis and management of chronic open angle glaucoma and ocular hypertension. London: RCS; 2009
POAG SUSPECTS WITH NORMAL IOP PATHWAY

1 To be clinically assessed based on age, IOP, CCT, changes in ONH and VF
2 ONH and/or peripapillary RNFL appearance is suggestive of, but not definitive for glaucoma
3 If there is no change in the parameters after 3 - 5 years, the patient can be transferred from active glaucoma care to general ophthalmologist or primary care optometrist for annual assessment.

LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>alpha</td>
</tr>
<tr>
<td>β</td>
<td>beta</td>
</tr>
<tr>
<td>€</td>
<td>Euro</td>
</tr>
<tr>
<td>5-FU</td>
<td>5-Fluorouracil</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>µm</td>
<td>micrometre</td>
</tr>
<tr>
<td>AAC</td>
<td>acute angle closure</td>
</tr>
<tr>
<td>ALPI</td>
<td>Argon laser peripheral iridoplasty</td>
</tr>
<tr>
<td>ALT</td>
<td>Argon laser trabeculoplasty</td>
</tr>
<tr>
<td>AS-OCT</td>
<td>Anterior Segment-Optical Coherence Tomography</td>
</tr>
<tr>
<td>AUD</td>
<td>Australian Dollar</td>
</tr>
<tr>
<td>CAI(s)</td>
<td>carbonic anhydrase inhibitor(s)</td>
</tr>
<tr>
<td>CCT</td>
<td>central corneal thickness</td>
</tr>
<tr>
<td>CDR</td>
<td>cup: disc ratio</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CPC</td>
<td>cyclophotocoagulation</td>
</tr>
<tr>
<td>CPG(s)</td>
<td>clinical practice guidelines</td>
</tr>
<tr>
<td>CSLO</td>
<td>confocal scanning laser ophthalmoscopy</td>
</tr>
<tr>
<td>D</td>
<td>diopter</td>
</tr>
<tr>
<td>dB</td>
<td>decibel</td>
</tr>
<tr>
<td>DM</td>
<td>diabetes mellitus</td>
</tr>
<tr>
<td>EGPS</td>
<td>European Glaucoma Prevention Study</td>
</tr>
<tr>
<td>GAT</td>
<td>Goldmann applanation tonometry</td>
</tr>
<tr>
<td>GDD</td>
<td>glaucoma drainage devices</td>
</tr>
<tr>
<td>GIT</td>
<td>gastrointestinal tract</td>
</tr>
<tr>
<td>GHT</td>
<td>Glaucoma hemifield test</td>
</tr>
<tr>
<td>GON</td>
<td>glaucomatous optic neuropathy</td>
</tr>
<tr>
<td>HR</td>
<td>hazard ratio</td>
</tr>
<tr>
<td>IOP</td>
<td>Intraocular pressure</td>
</tr>
<tr>
<td>ISNT</td>
<td>Inferior Superior Nasal Temporal</td>
</tr>
<tr>
<td>LCT</td>
<td>limbal corneal thickness</td>
</tr>
<tr>
<td>mg</td>
<td>milligramme</td>
</tr>
<tr>
<td>mJ</td>
<td>millijoule</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>mm²</td>
<td>millimetre square</td>
</tr>
<tr>
<td>MMC</td>
<td>Mitomycin C</td>
</tr>
<tr>
<td>mmHg</td>
<td>millimetre mercury</td>
</tr>
<tr>
<td>mW</td>
<td>milliwatt</td>
</tr>
<tr>
<td>MoH</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>NRR</td>
<td>neuro-retinal rim</td>
</tr>
<tr>
<td>nsec</td>
<td>nanosecond</td>
</tr>
<tr>
<td>NTG</td>
<td>normal tension glaucoma</td>
</tr>
<tr>
<td>NVG</td>
<td>neovascular glaucoma</td>
</tr>
<tr>
<td>OAG</td>
<td>open angle glaucoma</td>
</tr>
<tr>
<td>OCT</td>
<td>optical coherence tomography</td>
</tr>
<tr>
<td>OD</td>
<td>optic disc</td>
</tr>
<tr>
<td>OHT</td>
<td>ocular hypertension</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>OHT</td>
<td>ocular hypertension</td>
</tr>
<tr>
<td>OHTS</td>
<td>Ocular Hypertension Treatment Study</td>
</tr>
<tr>
<td>ONH</td>
<td>optic nerve head</td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
</tr>
<tr>
<td>OSA</td>
<td>Obstructive Sleep Apnoea</td>
</tr>
<tr>
<td>PACG</td>
<td>primary angle closure glaucoma</td>
</tr>
<tr>
<td>PAC</td>
<td>primary angle closure</td>
</tr>
<tr>
<td>PACD</td>
<td>peripheral anterior chamber depth</td>
</tr>
<tr>
<td>PACG</td>
<td>primary angle closure glaucoma</td>
</tr>
<tr>
<td>PACS</td>
<td>primary angle closure suspect</td>
</tr>
<tr>
<td>PAS</td>
<td>peripheral anterior synchiae</td>
</tr>
<tr>
<td>PSD</td>
<td>Pattern Standard Deviation</td>
</tr>
<tr>
<td>POAG</td>
<td>primary open angle glaucoma</td>
</tr>
<tr>
<td>QoL</td>
<td>quality of life</td>
</tr>
<tr>
<td>RCT(s)</td>
<td>randomised controlled trial(s)</td>
</tr>
<tr>
<td>RNFL</td>
<td>retinal nerve fibre layer</td>
</tr>
<tr>
<td>RR</td>
<td>relative risk</td>
</tr>
<tr>
<td>SAP</td>
<td>Standard Automated Perimetry</td>
</tr>
<tr>
<td>sec</td>
<td>second</td>
</tr>
<tr>
<td>SITA</td>
<td>Swedish Interactive Threshold Algorithm</td>
</tr>
<tr>
<td>SLT</td>
<td>Selective laser trabeculoplasty</td>
</tr>
<tr>
<td>TM</td>
<td>trabecular meshwork</td>
</tr>
<tr>
<td>TSCP</td>
<td>trans-scleral cyclophotocoagulation</td>
</tr>
<tr>
<td>USD</td>
<td>United States Dollar</td>
</tr>
<tr>
<td>VA</td>
<td>visual acuity</td>
</tr>
<tr>
<td>VEGF</td>
<td>vascular endothelial growth factor</td>
</tr>
<tr>
<td>VF</td>
<td>visual field</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENT

The members of development group of these guidelines would like to express their gratitude and appreciation to the following for their contributions:

- Panel of external reviewers who reviewed the draft
- Technical Advisory Committee of CPG for their valuable input and feedback
- All those who have contributed directly or indirectly to the development of the CPG
- Dr. Ana Fizalinda Abdullah Sani, Dr. Noor Aishah Yussof, Ms. Sin Lian Thye, Ms. Loong Ah Moi and Ms. Noormah Darus for their contribution in the CPG development

DISCLOSURE STATEMENT

The panel members of both Development Group and Review Committee had completed disclosure forms. None held shares in pharmaceutical firms or acts as consultants to such firms. Details are available upon request from the CPG Secretariat.

SOURCE OF FUNDING

The development of the CPG on Management of Glaucoma (Second Edition) was supported financially in its entirety by the MoH Malaysia while the printing was funded by the Malaysian Society of Ophthalmology.