RECOMMENDATIONS OF MINIMUM STANDARDS FOR INTER-FACILITY TRANSPORT OF THE CRITICALLY ILL PATIENTS
RECOMMENDATIONS OF MINIMUM STANDARDS FOR INTER-FACILITY TRANSPORT OF THE CRITICALLY ILL PATIENTS

Published by the College of Anaesthesiologists, Academy of Medicine of Malaysia

FOREWORD

I would like to take this opportunity to thank the College of Anaesthesiologists and the College of Emergency Physicians, Academy of Medicine of Malaysia, as well as the Malaysian Society of Anaesthesiologists and the Malaysian Society of Intensive Care, for inviting me to write a foreword for RECOMMENDATIONS OF MINIMUM STANDARDS FOR INTER-FACILITY TRANSPORT OF THE CRITICALLY ILL PATIENTS.

I would also like to congratulate everyone involved for their commendable efforts in coming up with these recommendations which are very relevant in our day-to-day clinical practice.

The Colleges of the Academy of Medicine of Malaysia, as well as the Malaysian Society of Anaesthesiologists and the Malaysian Society of Intensive Care, have taken many initiatives to improve and enhance the quality and delivery of medical services, especially in anaesthesia and intensive care services in the country. The Colleges are not only organising Conferences and continuous medical education Programmes, but are also very active in the preparation and dissemination of guidelines and protocols. These initiatives help the Ministry of Health Malaysia to meet its objectives.

The movement of patients within the hospital, as well as from one hospital to another, is not a feat that we have just started. With the advancement in medicine and regionalisation of sub-specialists care at major hospitals, we are seeing more and more sick patients being transported which, otherwise would not have been done so decades ago. We are also beginning to perform aeromedical transportation of patients with increasing regularity as well. As such, we need to ensure that the care during transport is not only optimal but of the highest standards as well. All relevant personnel who will be involved in this type of transport need to understand the nature of the transport requested and the complexities around it.
I hope that these recommendations will be appreciated by all medical personnel, in both the public and private hospitals. It is hoped that by adhering to these minimum recommendations, adverse outcomes following patient transportation can be minimised as far as possible.

From the standpoint of the Ministry of Health Malaysia, we will continue to support all medical personnel in any way we can, by providing the necessary framework, equipment, medications and other logistics required in rendering the practice of patient transport as safe as possible.

Datuk Dr Noor Hisham Bin Abdullah
Director-General of Health
Ministry of Health Malaysia
PREFACE

It is timely that the College of Anaesthesiologists, the College of Emergency Physicians, the Malaysian Society of Intensive Care and the Malaysian Society of Anaesthesiologists, formed a Writing Committee to look into the various aspects of inter-facility transport of the critically ill patients.

The Writing Committee, comprising Anaesthesiologists, Emergency Physicians and Intensivists, met and went through a number of existing guidelines from America, United Kingdom, Australia, New Zealand and Hong Kong, and decided on a number of issues relevant to our local setting.

The Writing Committee also decided that the details of the inter-facility transport of the critically ill patient will be presented in the form of a manual, the task of which will be taken up by the College of Emergency Physicians.

I wish to thank all members of the Writing Committee for their enthusiasm and hard work. I also wish to thank the reviewers for reviewing the draft document.

I sincerely hope that you will find these Recommendations useful.

Dr Tan Cheng Cheng
Chairperson
Writing Committee
WRITING COMMITTEE

CHAIRPERSON
Dr Tan Cheng Cheng
Intensivist
Hospital Sultanah Aminah, Johor Bahru
Johor, Malaysia

SECRETARY
Dr Gunalan Palari Arumugam
Anaesthesiologist
Pantai Hospital Ipoh, Ipoh, Perak, Malaysia

Dr Wan Nasrudin Wan Ismail
Intensivist
Hospital Raja Perempuan Zainab II, Kota Bahru
Kelantan, Malaysia

Dr Lim Wee Leong
Anaesthesiologist
Hospital Sungai Buloh, Selangor, Malaysia

Dr Sarah Shaikh Abdul Karim
Emergency Physician
Hospital Sungai Buloh, Selangor, Malaysia

Dr Ramzuzaman Ismail
Emergency Physician
Hospital Raja Permaisuri Bainun, Ipoh
Perak, Malaysia
REVIEW PANEL

Dr Adi Osman
Emergency Physician
Hospital Raja Permaisuri Bainun, Ipoh
Perak, Malaysia

Dr Mahathar Abd Wahab
Emergency Physician
Hospital Kuala Lumpur, Kuala Lumpur, Malaysia

Dr Nor’Azim Mohd Yunos
Intensivist and Associate Professor
Monash University, Johor Bahru
Johor, Malaysia

Dr Raveenthiran Rasiah
Anaesthesiologist
Darul Ehsan Medical Centre, Shah Alam
Selangor, Malaysia

Dr Sekar KPK Shanmugam
Intensivist
Prince Court Medical Centre, Kuala Lumpur, Malaysia

Dr Shanthi Ratnam
Intensivist
Hospital Sungai Buloh, Selangor, Malaysia

Dr Sushila Sivasubramaniam
Anaesthesiologist
Hospital Selayang, Selangor, Malaysia
1. INTRODUCTION

Critically ill patients are transported to alternate healthcare facilities to obtain additional care that is not available at the existing facility.

This document outlines the minimum standards required for the safe inter-facility transport of the critically ill patients.

A critically ill patient is defined as a patient who has a critical illness or injury that acutely impairs one or more vital organ systems. Adverse physiological changes during transport of the critically ill patients are common and can be life-threatening.

The decision to transport a critically ill patient is made when potential benefits of transport outweigh the potential risks. Risks incurred during transport can be minimised by careful planning and the use of competently trained personnel and monitoring equipment.

2. ADMINISTRATIVE RESPONSIBILITIES

Administrative responsibilities are expected to cover all aspects of the transport of the critically ill which include:

- Referral procedures
- Transport protocols
- Costing
- Training of personnel
- Procurement of equipment including personal protective equipment
- Staff safety, protection and insurance, where applicable
3. PROCEDURES AND PROTOCOLS

3.1. DECISION MAKING

3.1.1. Decision to transfer must be made by a senior doctor preferably specialist or consultant in charge of the patient after weighing risks and benefits.

3.1.2. Decision must be communicated to the next-of-kin where applicable. However, this communication should not supersede or compromise the clinical management of the patient.

3.2. INITIATION AND RESPONSE

3.2.1. Each facility must have its own mechanism of patient transport system.

3.2.2. The initiation of the patient transport system should be simple, with clear guidelines.

3.2.3. The response of the transport system should be rapid.

3.3. COORDINATION AND COMMUNICATION

3.3.1. Communications must be reliable and available at all times.

3.3.2. Communication loop must be established among the referring facility, the transport team and receiving facility.

3.3.3. First contact communication between referring facility and receiving facility should include the following:
 a) Patient's current condition and management
 b) Steps needed to be taken in planning and preparation for the transport
3.4. RESPONSIBILITY

3.4.1. The chain of responsibility must be clear throughout the transport. The most qualified medical practitioner should be responsible for the transfer process.

3.4.2. Pre-transport resuscitation and stabilisation is a joint responsibility of both referring and receiving facilities. Agreement between referring and receiving facilities must be achieved on the emergency care and level of stability prior to commencement of transport.

3.4.3. Care of patient and safety during transport is the responsibility of the referring facility.

3.4.4. Upon arrival, the continuity of care is the responsibility of the receiving facility after completion of handover.

3.4.5. Handover should be done between medical personnel of the same or higher level.

3.5. DOCUMENTATION

3.5.1. The clinical record should have the following documentation:

a) Patient’s clinical status before, during and after transport
b) Relevant medical conditions
c) Therapy given
d) Any other pertinent events or conditions

3.5.2. A copy of this record should be provided to the receiving facility.
4. **STAFFING**

4.1. The transport team should be selected based on the clinical requirements of the patient. This includes the capability to monitor and provide emergency or pharmacological intervention for the patient.

4.2. There should be a minimum of two transport team members at the patient compartment of the transport vehicle for the purpose of monitoring and intervention.

4.3. There should be at least one member of the transport team who is trained to initiate the emergency intervention. Depending on the clinical requirements of the patient, a doctor who is trained in the management of a critically ill patient may be required to be a member of the transport team.

4.4. If such a person is not available, then an on-line medical directive approach is needed. On-line medical directions are directives given for particular patient care by a physician who is not physically present at patient’s side.

5. **TRAINING**

Each facility is expected to conduct training with regards to the following key areas:

- Usage of equipment
- Effective medical communications
- Emergency care for critically ill patient
- Safety of transport
6. **MODE OF TRANSPORTATION FOR INTER-FACILITY TRANSPORT**

6.1. **CONSIDERATION ON THE MODE OF TRANSPORTATION**

6.1.1. Consideration on the mode of transportation to be used will depend on the following factors:

 a) Nature of illness
 b) Possible clinical impact of the transport environment
 c) Urgency of intervention
 d) Location of patient
 e) Distances involved
 f) Number of accompanying personnel and equipment
 g) Road transport time and road conditions
 h) Range and speed of vehicle

6.1.2. With all modes of transport, stabilisation of vital signs, provision of a secure airway and IV access, securing of all catheters and provisions of appropriate monitoring before departure is fundamental to safe transport.

6.1.3. The vehicle must be equipped with the minimum equipment required as outlined in Appendix 1.

6.2. **TRANSPORT VEHICLE REQUIREMENTS**

6.2.1. Vehicles should be well-maintained and regularly serviced.

6.2.2. The vehicle must support the use of equipment such as adequate power supply.
7. **EQUIPMENT**

7.1. **EQUIPMENT SELECTION**

7.1.1. Equipment should be appropriate for use according to the following factors:

a) Patient’s condition

b) Level of monitoring needed during transport and in ambulance environment

c) Level of therapeutic intervention required

7.1.2. Attention must be given to size, weight, battery life, oxygen consumption and durability, as well as to suitability for operation under conditions of transport.

7.1.3. Electrical and gas supply fittings of all equipment must be compatible with those of the transport vehicle.

7.1.4. All equipment needs to be properly calibrated, maintained and regularly checked.

7.1.5. All equipment should incorporate audible and visual alarms.

7.2. **EQUIPMENT HANDLING DURING TRANSPORT**

7.2.1. All equipment should be adequately restrained, and readily available to the operator.

7.2.2. Monitoring and infusion devices should be kept in areas visible to the accompanying staff.

7.2.3. Patient stretchers should be adequately secured within the transport vehicle.
8. PHARMACOLOGICAL AGENTS

Pharmacological agents necessary to manage patient’s specific clinical condition and anticipated deterioration and acute life-threatening medical emergencies will need to be brought along. These conditions include:

- Cardiac arrest
- Hypotension
- Hypertension
- Cardiac dysrhythmia
- Pulmonary oedema
- Anaphylaxis
- Bronchospasm
- Hypoglycaemia
- Hyperglycaemia
- Raised ICP
- Uterine atony
- Adrenal dysfunction
- Narcotic depression
- Convulsions
- Agitation
- Pain
- Emesis
- Electrolyte abnormalities
- Provision of sedation and neuromuscular paralysis
9. MONITORING

9.1. Constant direct observation of patient by medical personnel is essential during transport.

9.2. Direct observation should be supplemented by vital sign monitoring that include the following:

9.2.1. Continuous cardiac rhythm monitoring

9.2.2. Non-invasive blood pressure

9.2.3. Heart rate

9.2.4. Respiratory rate

9.2.5. Oxygen saturation (SpO₂)

9.2.6. End-tidal CO₂ (recommended especially for transporting intubated patients with head injuries or raised intracranial pressure (ICP)

9.3. Documentation of monitoring is recommended at 15-minute interval, or shorter when clinically appropriate

10. PRE-DEPARTURE PROCEDURES

10.1. The transport team must be free from other duties upon activation.

10.2. The receiving person or staff at the destination must be notified, and the arrival time must be clearly understood.

10.3. All pieces of equipment must be checked, and notes and imaging films gathered using a check-list method. Individual responsible for checking equipment must be identified.

10.4. A best route should be planned. Lifts should be secured or reserved beforehand.
11. PATIENT PACKAGING AND LOADING

11.1. The patient must be reassessed at all steps of movement such as after transfer to stretcher, and loading into ambulance before transport begins.

11.2. An example of a brief check on the patient is listed in Table I.

Table I: Brief patient assessment process prior to transport

<table>
<thead>
<tr>
<th>AREAS</th>
<th>ASSESSMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airway</td>
<td>Ensure secured and patent</td>
</tr>
<tr>
<td>Ventilation</td>
<td>Adequate; respiratory variables appropriate; PEEP/CPAP (if set); and FiO₂ levels correct</td>
</tr>
<tr>
<td>Circulation</td>
<td>Haemodynamically stable; vital signs displayed on transport monitors and clearly visible to transport team members</td>
</tr>
<tr>
<td>Venous access</td>
<td>Adequate, secured and patent</td>
</tr>
<tr>
<td>IV drips and infusion pumps</td>
<td>Functioning properly</td>
</tr>
<tr>
<td>All drains (urinary, wound, or underwater seal)</td>
<td>Functioning and secured; underwater seal drain is not clamped</td>
</tr>
<tr>
<td>All equipment alarms</td>
<td>Switched on</td>
</tr>
<tr>
<td>Patient</td>
<td>Safely secured on trolley</td>
</tr>
</tbody>
</table>

11.3. Upon satisfactory evaluation, only then should the actual journey begins.
12. CARE DURING TRANSPORT

12.1. The status of the patient must be checked at regular intervals.

12.2. Any change in the patient’s condition, unexpected event, or critical incident, must be acted upon immediately.

13. ARRIVAL PROCEDURES

13.1. On arrival at the destination, the patient will need to be received at a designated area where handover of clinical care can be done.

13.2. The transport staff must remain with the patient until an appropriate handover has been done.

14. SPECIAL SITUATIONS

While the recommendations provide minimum standards of care that should be followed by all healthcare providers during inter-facility transport of the critically ill patient, it is recognised that there will be situations where these standards cannot be followed due to special circumstances such as during disaster.

14.1. Transportation of patients on circulatory supportive devices (IABP/ECMO) and other specialised devices (Incubator/Temperature Regulation Devices)

14.1.1. All circulatory supportive devices should have adequate battery power, in appropriate setting (including alarm limits, if any) and are operational before and during transport.

14.1.2. There should be trained personnel who are able to provide the specialised care of critically ill patient on the circulatory supportive devices.
REFERENCES

APPENDIX 1

EQUIPMENT LIST

<table>
<thead>
<tr>
<th>EQUIPMENT CATEGORY</th>
<th>LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory Support</td>
<td>Basic airway devices such as oropharyngeal airway</td>
</tr>
<tr>
<td></td>
<td>Advanced airway devices including supraglottic airway devices such as laryngeal mask airway</td>
</tr>
<tr>
<td></td>
<td>Oxygen delivery devices including nebuliser</td>
</tr>
<tr>
<td></td>
<td>Self-inflating bag ventilation device</td>
</tr>
<tr>
<td></td>
<td>Suction equipment</td>
</tr>
<tr>
<td></td>
<td>Portable ventilator with disconnect alarms and high and low pressure alarms</td>
</tr>
<tr>
<td></td>
<td>Intubation set with appropriate size blades and endotracheal tubes</td>
</tr>
<tr>
<td></td>
<td>Oxygen supply in excess of that estimated for the maximum transport time</td>
</tr>
<tr>
<td>Patient Monitoring</td>
<td>Patient vital sign monitor device (lead II ECG, NIBP, HR, RR, SpO₂)</td>
</tr>
<tr>
<td>Pharmacology /Intervention</td>
<td>Vascular cannulae (peripheral and central)</td>
</tr>
<tr>
<td></td>
<td>IV fluids</td>
</tr>
<tr>
<td></td>
<td>Infusion pumps</td>
</tr>
<tr>
<td></td>
<td>Syringes and needles</td>
</tr>
</tbody>
</table>
Infection Control
- Personal protective equipment such as gloves, mask
- Standard Precaution Equipment such as hand rub and disinfectant wipes, sharps disposal container and bag for biological refuse

Cardiac Intervention Device
- Defibrillator (automated or manual)

Communication Devices
- Handphones or two-way communication devices such as radio

Others
- Nasogastric tube and bag
- Urinary catheter and bag
- Dressings, bandages, slings, splints and tapes
- Cutting shears and portable torch
- When clinically indicated, equipment to measure other physiological variables such as temperature, point of care blood analysis and glucometer, should be made available.
SECRETARIAT

G-1 Medical Academies of Malaysia
210 Jalan Tun Razak
50400 Kuala Lumpur

TELEPHONE: (603) 4023 4700
4025 4700
4025 3700

FACSIMILE: (603) 4023 8100